Browse > Article
http://dx.doi.org/10.5338/KJEA.2016.35.1.08

Culture Method of Spore for Entomopathogenic Fungus Using Natural Zeolite Ceramic Ball  

Lee, Jung-Bok (Department of Medicinal Plant Resources, College of Natural Sciences, Andong National University)
Kim, Beaum-Soo (Department of Medicinal Plant Resources, College of Natural Sciences, Andong National University)
Joo, Woo-Hong (Department of Biology, College of Natural Sciences, Changwon National University)
Kwon, Gi-Seok (Department of Medicinal Plant Resources, College of Natural Sciences, Andong National University)
Publication Information
Korean Journal of Environmental Agriculture / v.35, no.1, 2016 , pp. 72-78 More about this Journal
Abstract
BACKGROUND: Entomopathogenic fungi have been studied to develop for biological control agents as an alternative to chemical control agents in insect pest management. This investigated to determine the optimal culture conditions in ceramic balls for maximal sporulation of entomopathogenic fungi Beauveria bassiana M130 by use rice bran extract.METHODS AND RESULTS: METHODS AND RESULTS: A culture of entomopathogenic fungi for 12day on rice bran extract(1:8, w/v) incubated in ceramic matrix at 28℃. Natural zeolite ceramic ball was high production of 4.2×108 conidial/mL. The culture condition optimized initial pH, temperature, rice bran extract concentration, adhesives substance and concentration of NaCl, respectively. The high production of spore optimal conditions were temperature 28℃, initial pH 3, rice bran extract 3 mL, starch 33 g, 5 % NaCl and sopre suspension 7 mL, respectively.CONCLUSION: This study was carried out for the mass production of entomopathogenic fungi conidia recover rate 65% in matrix of natural zeolite ceramic ball, and to develop ingredient-used formulation of Beauveria bassiana M130 conidia for biological control agents.
Keywords
Biological control; Ceramic ball; Entomopathogenic fungi; Rice bran; Spore;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Burges, H. D. (1998). Formulation of mycopesticides. pp. 131-186. In: Burges, H. D. (ed.), Formulation of microbial biopesticides biopesticides: Beneficial microorganisms, nematodes and seed treatment. Kluwer academic publisher, Dordrecht, The Netherland.
2 Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science. 280(2), 309-314.   DOI
3 Faria, M., & Wraight, S. P. (2001). Biological control of Bemisia tabaci with fungi. Crop Protection. 20(9), 767-778.   DOI
4 Inglis, G. D., Johnson, D. L., & Goettel, M. S. (1997). Effect of temperature and sunlight on mycosis of Beauveria bassiana (Hyphomycetes:Sympodulosporae) of grasshoppers under field conditions. Environmental Entomology. 26(2), 400-409.   DOI
5 Jo, M. S., Lee, J. B., Kim, J. E., Sohn, H. Y., Jeon, C. P., Choi, C. S., & Kwon, G. S. (2010). Biodegradation of endosulfan by Klebsiella oxytoca KE-8 immobilized on activated carbon. Korean Journal of Environmental Agriculture. 29(2), 176-183.   DOI
6 Kim, I. S., & Kim I. (2009). Status and future prospects of pest control agents in environmentally-friendly agriculture, and importance of their commercialization. Korean Journal of Environmental Agriculture. 28(3), 301-309.   DOI
7 Kim, P. H., Yoon, C. S., Hong, S. I., Kim, S. W., Kang, S. W., & Sung, J. M. (1999). Spore production of entomopathogenic fungus, Beauveria bassiana 726, using molasses. Korean Journal of Biotechnology and Bioengineering. 14(3), 365-370.
8 Kim, C. S., Lee, J. B., Kim, B. S., Lee, M. H., Kang, K. M., Joo, W. H., Kim, J. W., Im, D. J., & Kwon, G. S. (2013). The optimal condition and enzyme activity of entomopathogenic fungus Beauveria bassiana using extracted rice bran. Journal of Life Science, 23(8), 1010-1018.   DOI
9 Kim, C. S., Lee, J. B., Kim, B. S., Shin, K. S., Kim, J. W., & Kwon, G. S. (2014). A study on prevention technique for the greenhouse whitefly (Trialeurodes vaporariorum) by using entomopathogenic fungi Beauveria bassiana M130. Journal of Microbiology and Biotechnology. 24(1), 1-7.   DOI
10 Kim, J. J., Han, J. H., & Lee, S. (2014). Selection of carbon, nitrogen source and carrier for mass production of Beauveria bassiana. The Korean Journal of Mycology. 42(4), 328-332.   DOI
11 Kumar, D., Singh, K. P., & Jaiswal, R. K. (2005). Screening of different media and substrates for cultural variability and mass culture of Arthrobotrys dactyloides drechsler. Mycobiology. 33(4), 215-222.   DOI
12 Lacey, L. A., Liu, T. X., Buchman, J. L., Munyaneza, J. E., Goolsby, J. A., & Horton, D. R. (2011). Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biological Control. 56(3), 271-278.   DOI
13 Oh, S. K., Kim, D. J., Chun, A. R., Yoon, M. R., Kim, K. J., Lee, J. S., Hong, H. C., & Kim, Y. K. (2010). Antioxidant compounds and antioxidant activities of ethanol extracts from milling by-products of rice cultivars. Journal of The Korean Society of Food Science and Nutrition. 39(4), 624-630.   DOI
14 Pai, S. L., Hsu, Y. L., Chong, N. M., Sheu, C. S., & Chen, C. H. (1995). Continuous degradation of phenol by Rhodococcus sp. immobilized on granuar activated carbon and in calcium alginate. Bioresource Technology. 51(1), 37-42.   DOI
15 Min, E. G., & Han, Y. H. (2002). Optical condition for mycelial growth of Beauveria bassiana and its extracellular enzyme activity. Korean Journal of Microbiology. 38(1), 50-53.
16 Mondragon, F., Rincon, F., Sierra, L., Escobar, J., Ramirez, J., & Fernandez, J. (1990). New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel. 69(2), 263-266.   DOI
17 Pham, T. A., Kim, J. J., Kim, S. G., & Kim, K. (2009). Production od blastospore of entomopathogenic Beauveria bassiana in a submerged batch culture. Mycobiology. 37(3), 218-224.   DOI
18 Rahman, R. N. Z. A., Ghazali, F. M., Salleh, A. B., & Basri, M. (2006). Biodegradation of hydrocarbon contamination by immobilized bacterial cells. The Journal of Microbiology. 44(3), 354-359.
19 Sakamoto, N., Tanaka, S., Sonomoto, K., & Nakayama, J. (2011). 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. International Journal of Food Microbiology. 144(3), 352-359.   DOI
20 Schmidt, C. G., & Furlong, E. B. (2012). Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopusoryzae. Bioresource Technology. 123, 36-41.   DOI
21 Wang, S. L., Yena, Y. H., Shih, I. L., Chang, A. C., Chang, W. T., Wu, W. C., & Chai, Y. D. (2003). Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme and Microbiology Technology. 33(7), 917-925.   DOI
22 Suresh, P. V., & Chandrasekaran, M. (1999). Impact of process parameters on chitinase production by an alkalophilic marine Beauveria bassiana in solid state fermentation. Process Biochemistry. 34(3), 257-267.   DOI
23 Silman, R. W., Nelson, T. C., & Bothast, R. J. (1991). Comparison of culture methods for production of Colletotrichum truncatum spore for use as a mycoherbicide. FEMS Microbiology. Letters. 79(1), 69-74.   DOI
24 Srikanth, J., & Santhalakshmi, G. (2012). Effect of media additives on the production of Beauveria brongniartii, an entomopathogenic fungus of Holotrichia serrata. Sugar Tech. 14(3), 284-90.   DOI