• Title/Summary/Keyword: 38 GHz Band Transition

Search Result 4, Processing Time 0.017 seconds

Rectangular Waveguide-NRD Waveguide Transition having the NRD Waveguide Built-in Structure (NRD 도파관에 내장된 구조를 갖는 구형 도파관-NRD 도파관 트랜지션)

  • Yoo, Young-Geun;Choi, Jae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.391-396
    • /
    • 2008
  • In this paper, we proposed the new rectangular waveguide-NRD waveguide transition in which the transition function about the standard waveguide is built in within the NRD waveguide ifself. The newly proposed rectangular waveguide-NRD waveguide transition was realized use of NRD waveguide input/output side wall thickness and hole width. In the case of the wall thickness, it was nearly identical with the half of the NRD waveguide guide wavelength and the width of an hole was nearly coincide with the length of the long side of the standard waveguide connected with the NRD waveguide. This kind of the principles is applicable to be unrelated with the frequency band. In this paper, it made in 38 GHz band with the rectangular waveguide-NRD waveguide transition and the feasibility was confirmed. In the back-to-back structure, the rectangular waveguide-NRD waveguide transition manufactured in 38 GHz band has the insertion loss less than 0.4 dB and also has the return loss less than 20 dB.

A Study on the 60 GHz Band Radial Line Slot Array Antenna Fed by a Rectangular Waveguide (60 GHz 대역용 도파관 급전 Radial Line Slot Array 안테나에 관한 연구)

  • 김용훈;채희덕;이중원;박종국;김성철;김성철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.257-262
    • /
    • 2002
  • A single-layered radial line slot array (SL-RLSA) antenna etched on a substrate and fad by a rectangular waveguide is presented in the 60 ㎓ band. The design curves are obtained by an efficient electromagnetic coupling analysis using Ewald Sum technique and Shanks transformation. The antenna has rectangular waveguide feed structure using a rectangular waveguide-to-radial line transition. The prototype antenna of 10 cm-diameter was tested and the gain of 31 ㏈i and the efficiency of 38% were measured at 60 ㎓.

Design of Low-loss Microstrip-to-Waveguide Inline Transition Structure (저손실 마이크로스트립-도파관 inline 전이구조 설계 )

  • Young-Gon Kim;Han-Chun Ryu;Se-Hoon Kwon;Seon-Keol Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.29-34
    • /
    • 2023
  • A clear and efficient design method for a microstrip-to-waveguide inline transition, which is based on an analytical model, is presented. The transition consists of three parts: a microstrip-to-SIW transition, a dielectric-loaded waveguide with substrate-height, and a stepped-height waveguide. The shape of the transitional structure is formed for impedance matching. Two equivalent type0s of dielectric-loaded transitional structures are proposed. The design method is applicable to any size of the waveguide, but a design method of two Ka-band transitions is demonstrated. The proposed transitions, in a back-to-back configuration, have less than 1.2 dB insertion loss and more than 15 dB return loss from 29.8 GHz to 38.2 GHz.

A Study on the development of high gain and high power Ka-band hybrid power amplifier module (고출력, 고이득 Ka-band 하이브리드 전력증폭기 모듈 개발에 관한 연구)

  • Lee, Sang-Hyo;Kim, Hong-Teuk;Jeong, Jin-Ho;Kwon, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.49-54
    • /
    • 2001
  • In this work, we developed a Ka-band hybrid 4-stage power amplifier module using GaAs pHEMTs and waveguide to microstrip transitions. It has high gain and high output power characteristics. We used a 10 mil- thickness duroid substrate to fabricate this power amplifier and waveguide to microstrip transitions. The fabricated waveguide to microstrip transition showed about 1 dB insertion loss(back to back) at 32 40 GHz. The measured results of power amplifier module showed over 1W output power at 36.1 - 37.1 GHz. And it showed 31 dBm output power, 24 dB power gain and 15 % power-added efficiency(PAE) at 36.5 GHz.

  • PDF