• Title/Summary/Keyword: 345kV Transmission Lines

Search Result 61, Processing Time 0.031 seconds

A study on the Analysis and Effects for Unbalanced Swing Characteristics of Prefabricated Jumper Devices (조립식 점퍼장치의 불평형 횡진의 해석과 영향 연구)

  • Sohn, H.K.;Lee, E.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.819-821
    • /
    • 2000
  • The purpose of swing analysis for prefabricated jumper devices are to prevent flashover between jumper device and tower post. To prevent flashover. proper weight is add to the horizontal rod. This paper is a proposed to the analysis methods and the effects for unbalanced swing characteristics of prefabricated jumper devices. And the proposed technique is applied with the 345kV and 765kV transmission lines.

  • PDF

Transient Analysis and Evaluation of 345kV Combined Transmission Line Connected with GIL (345kV급 GIL이 연계된 혼합송전선로의 뇌서지해석 및 평가)

  • Jang, Hwa-Youn;Lee, Jong-Beom;Kim, Yong-Kap;Jung, Chae-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1949-1955
    • /
    • 2010
  • This paper describes the characteristic and effectiveness of combined GIL transmission line through lightning surge analysis. In addition the XLPE cable is analyzed in the same condition to compare with GIL. Lighting surge analysis is carried out by EMTP/ATP-Draw to obtain overvoltage of GIL and XLPE cable at service-point and load-out area of underground line. Propagation velocity is calculated in combined transmission lines with GIL and XLPE cable. The overvoltage is also analyzed on GIL and XLPE cable with or without arrester operation. The Analysis results show that overvoltage of GIL is occurred higher than XLPE cable at the same condition. Therefore it is evaluated that the application of GIL at the field should be considered cautiously when more detailed transient analysis, another electrical testes and economic evaluations are implemented.

Measurement of Magnetic and Electric Field from Kwachun Power Transmission Lines (과천 송전선로 전자계 측정)

  • Kim, D.W.;Ryu, C.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.353-356
    • /
    • 1996
  • Early this year the construction of new high voltage power lines have been forced to stop due to the demonstration of residents in Kwa-chun. According to mutual agreement between the residents and Korea Electric Power Corporation, electromagnetic field(EMF) from present power lines was measured and EMF after completion of new power lines was estimated. The results show that EMF near power lines Is relatively low, and EMFnear electric substation is quite high due to the short distance between the power lines and ground. For 4 conduction 345kV line, magnetic field decreases to 3mG at the distance of 50m from the power line.

  • PDF

The Development of Dry-type Shunt Reactor for 345kV Substation Main Transformer (345kV 변전소 주변압기 3차측용 건식형 분로리액터 개발)

  • An, Y.H.;Park, J.B.;Song, T.S.;Han, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.497-500
    • /
    • 2001
  • Shunt reactors are used to compensate for capacitive VARs generated by lightly loaded transmission lines or underground cables. They are normally connected to the transformer tertiary winding. Dry-type shunt reactors have the advantage compared with oil-immersed shunt reactor as followings. Lower investment and maintenance cost, No fire hazard and no environmental concerns, Simple insulation to ground, Response to transient overvoltage less severe, Linearity of inductance versus load current, Lower-acoustic noise, Easier transport and handling due to lower weight, No oil-collecting system must be provided since there is no oil that can leak into the ground.

  • PDF

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

A development of the 345kV spacer damper with automatic clamping device for transmission line (345kV 송전선로용 자동클램핑 장치형 스페이서 댐퍼 개발)

  • An, Y.H.;Lee, D.I.;Kim, T.J.;Han, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.278-282
    • /
    • 2001
  • The purpose of this study is to introduce a new spacer damper for the bundle transmission lines network. It has the special design, the main characteristics and advantage of this new kind of spacer damper. An Existing spacer damper with bolted clamps, although widely used, is a method of connection with certain disadvantage both as regards assembly on the conductor and in the course of time. Even if tightening torque is correctly applied by using bolt with share head or torque wrench during working time, the aeolian vibration could involve untightening during life time, so the cable can move into the Jaws and wire's breakage appear. To salve this problems, France, Japan and other countries had developed a spacer damper with an automatic system through many years. This new spacer damper is an original automatic clamping device (beltless) which does not require special tool for its installation. This device prevents clamp unlocking problems, ensures a simple installation and ensures a reliable-tightening during life time. Therefore, it is necessary to localize this boltless spacer damper with automate clamping device.

  • PDF

Decision of Optimal Magnetic Field Shielding Location around Power System Using Evolution Strategy Algorithm (Evolution Strategy 알고리즘을 이용한 송진선로 주변에서의 최적 자계차폐 위치선정)

  • Choe, Se-Yong;Na, Wan-Su;Kim, Dong-Hun;Kim, Dong-Su;Lee, Jun-Ho;Park, Il-Han;Sin, Myeong-Cheol;Kim, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • In this paper, we analyze inductive interference in conductive material around 345 kV power transmission line, and evaluate the effects of mitigation wires. Finite element method (FEM) is used to numerically compute induced eddy currents as well as magnetic fields around powder transmission lines. In the analysis model, geometries and electrical properties of various elements such as power transmission line, buried pipe lines, overhead ground wire, and conducting earth are taken into accounts. The calculation shows that mitigation wire reduces fairly good amount of eddy currents in buried pipe line. To find the optimum magnetic field shielding location of mitigation wire, we applied evolution strategy algorithm, a kind of stochastic approach, to the analysis model. Finally, it was shown that we can find more effective shielding effects with optimum location of one mitigation wire than with arbitrary location of multi-mitigation wires around the buried pipe lines.

A Study on Analysis of Surge Characteristics on Gas Insulated Transmission Lines (가스절연송전선로의 서지특성 분석에 관한 연구)

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Jang, Tai-In;Yoon, Jong-Keon;Kim, Yang-Sang;Suk, Kwang-Hyun;Kim, Hyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.371_372
    • /
    • 2009
  • This paper describes surge characteristics on 345kV combined transmission system mixed overhead line and GIL(Gas Insulated Transmission Line). Then, it is compared with the results of the system mixed overhead line and XLPE power cables. Finally the lightning overvoltages are also discussed according to surge arrester installation in two kinds of combined transmission systems when the lighting strikes on the phase conductor.

  • PDF

A Study on Reinforcement Planning of Transmission Lines for Composite Power System (복합계통의 송전설비 보강계획에 관한 연구)

  • 차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.45-50
    • /
    • 2001
  • Fuzzy theory is used to quantify some subjective criteria and consider uncertain factors for transmission line reinforcement planning in this paper. Sugeno's fuzzy integral is also used in the proposed method, because it can be easily allied to multi attribute decision making problems such as power system planning. To verify the proposed algorithm, some bode-neck lines are searched for the case that the amount of Maximal Load Supplying Capability(MLSC) is small using the results of contingency analysis for Korea Electric Power Corporation(KEPCO)'s 345[kV] transmission line in 1998. And several feasible alternatives are composed for line reinforcement which can dissolve the bottle-neck.

  • PDF

The Development Plan of Salt Contamination Map Using GIS (지리정보 시스템을 이용한 전국 염해 오손도 구축 방안)

  • Kang, Yeon-Woog;Kwak, Joo-Sik;Shim, Eung-Bo;Yoo, Chol-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.377-379
    • /
    • 2001
  • Contamination flashover is responsible for insulator electrical failures. Particularly, in Korea, with its perennially dry spring, the first spring rain often cause serious line outages by forming a conductive liquid film on the insulator surface. Rainwater and fog are not normally conductive but unfortunately atmospheric dust deposited on the insulator surface contains soluble salts which may lead to bad condition of insulation by combining watery and salts. Transmission design engineers have used a contamination map drawn on the traditional paper map. But it is not convenient because it does not include the information of Geographic Information accurately. This paper explains the newly developed salt contamination map program using Geographic Information System, which provide accurate geographic information. The program is designed to use four parts of datum, salt contamination levels, 345kV & 154 kV transmission lines, power plants & substations and background map. The digital background map is composed of raster files, the others are done by vector map.

  • PDF