• Title/Summary/Keyword: 31P NMR

Search Result 123, Processing Time 0.025 seconds

Syntheses and Theoretical Study of Palladium(II) Complexes with Aminophosphines as 7-Membered Chelate Rings

  • 김봉곤;양기열;정맹준;이배욱;도명기
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1162-1166
    • /
    • 1997
  • Nature of palladium(Ⅱ) complexes with 7-membered chelates was studied by experimental and theoretical methods on a Pd(L)Cl2 system, where L is Ph2PNHCH2CH2NHPPh2(L1), Ph2PNHC6H4NHPPh2(L2). The palladium(Ⅱ) complexes were prepared and characterized by elemental analysis, IR, UV, 1H, and 31P NMR spectroscopy. Ab initio calculations with geometry optimizations were also performed for related model systems, Pd(L)Cl2; L=R2PNH(CH2)2NHPR2(L3), R2PNHC6H4NHPR2(L4), R2P(CH2)4PR2(L5), R2PCH2(C6H4)CH2PR2(L6); R=H, CH3.

Photoreactivity of $ReH_5$(Cyttp) (Cyttp=Php$(CH_2CH_2CH_2PCy_2)_2)$ with CO, $CO_2\;and\;PMe_3$

  • Lee, Myung-Young;Shin, Dae-Ho;Kim, You-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.571-576
    • /
    • 1994
  • The photoreactions of $ReH_5(Cyttp)\;(1)\;(Cyttp=PhP(CH_2CH_2CH_2PCy_2)_2)\;with\;CO,\;CO_2\;and\;PMe_3 has been investigated to find the differences in reactivities from those of trismonophosphine analog. Irradiation of 1 under CO, $CO_2$ and excess $PMe_3$ in benzene results in the formation of the complexes, $ReH(CO)_2(Cyttp)\;(2),\;ReH_2({\eta}^2-HCO_2)(Cyttp)\;(3)\;and\;$ReH_3(PMe_3)(Cyttp)$ (4), respectively. The resulting products suggest that photoreactions of $ReH_5(Cyttp)$ proceed by photoextrusion of $H_2$ giving a phototransient species "$ReH_3$(Cyttp)" which can be trapped by CO, $CO_2\;and\;PMe_3$. The structures of 2, 3 and 4 are inferred based on $^1H,\;^{31}P$ NMR and I. R spectroscopy.

Cycloplatinated Complexes of Thiosemicarbazones. Synthesis and Crystal Structure of [$Ph_2PC_6H_4CHNNC(S)NHCH_3PtCl$]

  • 유동원;강상욱;고재정;최문근
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.305-310
    • /
    • 1997
  • The synthesis and characterization of the platinum heterocyclic carboxaldehyde thiosemicarbazone complexes [NC5H4CRNNC(S)NHR'PtCl] (R=H, R'=CH3(1); R=CH3, R'=CH3(2); R=CH3, R=H(3)) and diphenylphosphinophenyl carboxaldehyde thiosemicarbazone complexes [Ph2PC6H4CHNNC(S)NHRPtCl] (R=CH3(5); R=iC3H7(6); R=Ph(7)) are described. Compounds 1-3 were prepared by reaction of Pt(SEt2)2Cl2 with 2-acetylpyridine-4-alkylthiosemicarbazone in the presence of NEt3. Compounds 5-7 were prepared using Pt(SEt2)2Cl2 in toluene with diphenylphosphinophenyl carboxaldehyde alkylthiosemicarbazone. The compounds have been characterized by microanalysis, NMR (1H, 13C, 31P) spectroscopy, and single-crystal X-ray diffraction. X-ray single crystal diffraction analysis reveals that compound 5 is a mononuclear platinum compound with P,N,S-coordination mode.

Studies on Biological Activity of Wood Extractives(XII) - Antimicrobial and Antioxidative Activities of Extractives from the Heartwood of Prunus Sargentii (2) - (수목추출물의 생리활성에 관한 연구(XII) - 산벚나무 심재 추출성분의 항균 및 항산화활성(2) -)

  • Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.16-23
    • /
    • 2003
  • Four flavonoids were isolated from the heartwood of Prunus sargentii. The structures were identified by NMR spectroscopic analysis: prunetin as isoflavone, angophorol, and sakuranetin as flavanone, and isosakuranin as flavanone glycoside. However, these compounds indicated low antifungal and antioxidative activities. In this regard, it could suggest that high antifungal and antioxidative activities of extractives of P. sargentii have no ralationship with these compounds.

The Quantities of Methyl Orsellinate and Sparassol of Sparassis latifolia by Host Plants (기주식물에 따른 꽃송이버섯의 Methyl orsellinate와 Sparassol의 함량)

  • Kim, Min-Soo;Lee, Kyoung-Tae;Jeon, Sung-Min;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.41 no.4
    • /
    • pp.236-242
    • /
    • 2013
  • It is known not only that antifungal compounds such as sparassol, methyl orsellinate (ScI) and methyl-dihydroxy-methoxy-methylbenzoate (ScII) were produced during submerged culture from Sparassis crispa, but also that ScI and ScII were appeared higher antifungal activity than sparassol. The aim of this study, antifungal compounds of Sparassis latifolia were purified from mycelial culture media and identified by using NMR and ESI-MS. Based on HPLC analysis, methyl orsellinate and sparassol were detected at 15 min and 31 min of retention time, respectively. The compounds derived from S. latifolia were classified into four production patterns according to their strains. The strains originated from host plant Larix kaempferi and Pinus koraiensis showed different patterns of compound production, whereas the strains originated from host plant P. densiflora and Abies holophylla showed almost same patterns. There was no correlation between mycelial biomass and compound production. KFRI 645 strain from L. kaempferi exhibited higher methyl orsellinate production (0.170 mg/ml). Sparassol was produced by KFRI 747 from P. densiflora (0.004 mg/ml). Thus, our result revealed the new fact that methyl orsellinate and sparassol have different patterns according to the strains originated from different host plants.

Preparation and Characterization of Dinuclear and Trinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2]X_2$ (M=Rh, Ir; E=Pyrazine, 4,4'-Bipyridyl, $X=SO_3CF_3$; $E=Pd(CN)_4$, $Pt(CN)_4$, X=none)

  • Ko Jaejung;Lee Myunggab;Kim Moonsik;Kang Sang Ook
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.158-162
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3(M=Rh$, Ir)reacts rapidly with Pyrazine or 4,4'-bipyridyl to yield dinuclear metal complexes $[(PPh_3)_3(CO)M({\mu}-pyrazine)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M= RhH; III: M=Ir) or [$(PPh_3)_2$(CO)M(${\mu}$-44'-bipyridyl)M(CO)$(PPh_3)_2](SO_3CF_3)_2$, (II: M=Rh; IV: M=Ir), respectively. Compounds, I, II, III, and IV were characterized by $^1H-NMR$, $^{13}C-NMR$, $^{31}P-NMR$, and infrared spectrum. Ethanol solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M=Rh, Ir) also reacts with $(TBA)_2$M'$(CN)_4$ (M'=Pd, Pt) to yield trinuclear metal complexes [$(PPh_3)_2$(CO)dM-NCM'$(CN)_2$CN-M(CO)$(PPh_3)_2]$ (V : M=Rh, M'=Pd; VI : M=Rh, M'=Pt; VII: M=Ir, M'=Pd; VIII: M=Ir, M'=Pt). The trinuclear metal complexes V, VI, VII, and VIII are bridged by the cyanide groups. The infrared spectrum of V, VI, VII, and VIII supports the presence of the bridged cyanide and terminal cyanide group.

Isolation and Chemical Structure Identification of Allelopathic Substances from the Ginkgo(Ginkgo biloba L.) Leaf Waste Produced by Phamaceutical Process (제약폐기 은행잎중에 함유된 식물생육억제물질 분리동정)

  • Seong, Ki-Seog;Kim, Bok-Jin;Kwon, Oh-Kyung;Choi, Du-Hoi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.377-383
    • /
    • 1997
  • Studies were conducted on the nature of allelopathic effect of the substances in the waste of ginkgo leaves from pharmaceutic factory. In the first step, to find out whether there was any allelophatic effect, young seedlings of radish and rice were grown in the water (crude) extract of ginkgo leaf waste and in different liquid/lquid partitioned fractions of EtOAc at pH 9, EtOAc at pH 3, and BuOH. As second step, attempts were made to isolate and identify the allelophatic substance in different liquid/liquid partitioned fractions using GC/MS and NMR techniques. The water (crude) extract of ginkgo leaf waste retarded the growth of radish seedlings under 10% concentration. In case of rice seedlings, the water extract of ginkgo leaf extract showed adverse effect on the growth when combined with $3.3{\times}10^{-6}M$ gibberellin A3. All of the liquid/liquid fractions of crude extract showed strong retardation of seedling growth of radish and rice at the concentration of 1%. Allelophatic substance was isolated from the crude extract using liquid/liquid partition, column chromatography and HPLC techniques. The analytical results of isolated componet using GC/MS and NMR proved that the allelophatic substance in the ginkgo leaf wastes is catechol; one of phenol compounds. Based on the experiences current study, a practical method for the testing of allelophatic effect of crude extract of some materials was proposed. In this method, rice seeds were allowed to sprout until the length of coleoptile to reach 0.5 mm. Such seedlings were submerged in the solution containing supposedly allelophatic substance and the length of shoot and root was measured 3 days after treatment.

  • PDF

X-ray and Spectroscopy Studies of Mercury (II) and Silver (I) Complexes of α-Ketostabilized Phosphorus Ylides (α-케토안정화된 일리드화 인의 수은(II) 및 은(I) 착물에 대한 X-선 및 분광학적 연구)

  • Karami, K.;Buyukgungor, O.;Dalvand, H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.38-45
    • /
    • 2011
  • The complexation behavior of the $\alpha$-ketostabilized phosphorus ylides $Ph_3P$=CHC(O) $C_6H_4-X$ (X=Br, Ph) towards the transition metal ions mercury (II) and Silver (I) was investigated. The mercury(II) complex {$HgX_2$ [Y]} 2 ($Y_1$=4-bromo benzoyl methylene triphenyl phosphorane; X=Cl(1), Br(2), I(3), $Y_2$=4-phenyl benzoyl methylene triphenyl phosphorane; X=Cl(4), Br(5), I(6)) have been prepared from the reaction of $Y_1$ and $Y_2$ with $HgX_2$ (X=Cl, Br, I) respectively. Silver complexes [$Ag(Y_2)_2]$ X(X=$BF_4$(7), OTf(8)) of the $\alpha$-keto-stabilized phosphorus ylides ($Y_2$) were obtained by reacting this ylide with AgX (X=$BF_4$, OTf) in $Me_2CO$. The crystal structure of complexes (1) and (4) was discussed. These reactions led to binuclear complexes C-coordination of ylide and trans-like structure of complexes $[Y_1HgCl_2]_2$. $CHCl_3$ (1) and $[Y_2HgCl_2]_2$ (4) is demonstrated by single crystal X-ray analyses. Not only all of complexes have been studied by IR, $^1H$ and $^{31}P$ NMR spectroscopy, but also complexes 1-3 have been characterized by $^{13}$CNMR.

Catalytic Reactivity of Transition Metal (Pd, Ni) complexes with Aminophosphines; I. Carbon-Carbon coupling reactions (Aminophosphine류가 배위된 전이금속(Pd, Ni) 착물의 촉매반응; I. 탄소-탄소 짝지움 반응)

  • Jung, Maeng-Joon;Lee, Chul-Jae;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.107-113
    • /
    • 2004
  • Several transition metal complexes, [$M(L)X_2$](M=Pd(II), Ni(II); X=CI, Br) are prepared with aminophosphine ligands such as 1,2-bis{(diphenylphosphino)amino}ethane{$Ph_2PNHCH_2CH_2NHPPh_2$}($L_1$), 1,2-bis{(diphenylphosphino)amino}propane{$Ph_2PNHCH(CH_3)CH_2NHPPh_2$}($L_2$), trans-1,2-bis{(diphenylphosphino)amino}cyclohexane{$Ph_2PNHC_6H_{10}NHPPh_2$}($L_3$) and 1,2-bis{(diphenylphosphino)amino}benzene{$Ph_2PNHC_6H_4NHPPh_2$}($L_4$). The properties of these complexes are characterized by optical spectroscopic methods including UV/vis spectroscopy, CD, IR, $^1H$- and $^{31}P-NMR$ together with conductometer and elemental analysis. All complexes are stable under atmospheric environment. Catalytic reactivity for C-C coupling between [$M(L)X_2$] and Grignard reagents(RMgX; R=phenyl, propyl, buthyl) by thermolysis were investigated utilizing GC/mass, $^1H$- and $^{13}C-NMR$. When mol scale is 1:20 at [$Pd(L)Cl_2$] and Grignard reagents, the high catalytic activity for C-C coupling is apparent. The [$M(L)X_2$](X=Cl, Br) complexes which have strong bond at M-P exhibit high yields for C-C coupling reactions. When the central metal ion is Pd(II), the high catalytic activity for C-C coupling is apparent. The complex coordinated with Br shows higher catalytic activity for C-C coupling reactions compared to Cl.

  • PDF

Effects of Residual Solvents in the Phase Transition, Transition Enthalpy, and Transition Temperature of Phospholipid Membranes (잔류 유기 용매가 모델 세포 지질막의 상전이, 상전이 엔탈피 및 상전이 온도에 미치는 영향)

  • An, Eun Seol;Choi, Jae Sun;Lee, Dong Kuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Lipid membranes composed of phosphatidylcholine (PC) are used in biophysical study to mimic cellular membranes and interactions between the membrane and chemicals, where organics solvents are used in dissolving lipids or chemicals. Later, solvents are removed from the solution under nitrogen gas at room temperature, followed by the further removal of the solvent at vacuum condition for several hours. In this process, some solvents are easily removed under described conditions above and others are required more severe conditions. In this study, $^{31}P$ solid-state nuclear magnetic resonance (SSNMR) techniques and differential scanning calorimetry (DSC) were used to see any changes in the line shapes of $^{31}P$ NMR spectra of multilamellar vesicles (MLVs) samples of POPC and in the phase change temperature of multilamellar vesicles (MLVs) of DPPC in DSC thermogram with or without any residual solvents. The thermodynamic parameters associated with the solvents did exhibit noticeable changes depending on solvent types. Thus, it is concluded that solvents should be carefully chosen and removed completely and experimental results should also be interpreted with caution particularly for the experiments investigating lipid phase changes and related topics.