• 제목/요약/키워드: 316L

검색결과 654건 처리시간 0.029초

오스테나이트계 316L 스테인리스강의 강도 및 감쇠능에 미치는 미세조직의 영향 (The Effects of Microstructure in Austenitic 316L Stainless Steels on the Strength and Damping Capacity)

  • 손동욱;이종문;김효종;남기우;박규섭;강창룡
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2006
  • The effects of microstructure on the damping capacity and tensile properties of 316L stainless steel were investigated. Increasing the degree of cold working, the volume fraction of $\varepsilon-martensite$ decreased after rising to maximum value at specific level of cold working, the volume fraction of d-martensite slowly increased and then dramatically increased from the point of decreasing $\varepsilon-martensite$ volume fraction. Increasing the degree of cold working, the behnvior of damping capacity is similar to that of the $\varepsilon-martensite$. After the damping capacity showing the maximum value at about $20\%$ of cold rolling, damping capacity was decreased with the volume fraction of $\varepsilon-martensite$. Tensile strength was proportional to the volume fraction of d-martensite, and elongation steeply decreased in the range low volume fraction of a'-martensite, then slowly decreased in range the above $10\%$ volume fraction of d-martensite. The damping capacity and elongation is strongly controlled by the volume fraction of $\varepsilon$ martensite with liner relationship. However, the effect of the volume fraction of d-martensite and austenite phase on the damping capacity was not observed. Tensile strength was governed by the volume fraction of d-martensite.

오스테나이트계 스테인리스강의 고온질화 (High Temperature Gas Nitriding of Austenitic Stainless Steels)

  • 공정현;유대경;박준홍;이해우;성장현
    • 열처리공학회지
    • /
    • 제20권6호
    • /
    • pp.311-317
    • /
    • 2007
  • This study examined the phase changes, nitride precipitation and variation in mechanical properties of STS 304, STS 321 and STS 316L austenitic stainless steels after high temperature gas nitriding (HTGN) at temperature ranges from $1050^{\circ}C\;to\;1150^{\circ}C$. Fine round type of $Cr_2N$ nitrides were observed in the surface layers of 304 and 316L steels, even more in STS 321. Additionally, square type of TiN was found in STS 321 austenitic matrix too. As a result of many precipitates in the surface layer of the STS 321, it was seen $370{\sim}470Hv$ hardness variation depending on the HTGN treatment conditions, and interior region of austenite represented 150Hv. The surface hardness value of STS 304 and STS 316L showed $255{\sim}320Hv$, respectively. The nitrogen content was shown 0.27, 1.7 and 0.4% respectively at the surface layers of the STS 304, STS 321 and STS 316L. After the HTGN it was shown the improvement of corrosion resistance of the STS 321 and STS 316L compared with solution annealed steels in the solution of 1N $H_2SO_4$ whereas the STS 304 was not.

적층제조된 스테인레스 316L에 대한 초음파나노표면개질에 따른 표면특성 및 부식성에 관한 연구 (Surface Quality and Corrosion of Additively Manufactured STS316L Treated by Ultrasonic Nanocrystal Surface Modification)

  • 김준호;오영택;박한별;이동호;김화정;김의준;심도식
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.94-103
    • /
    • 2020
  • This study investigated the effects of ultrasonic nanocrystal surface modification (UNSM) on the deteriorated surface of AISI SUS316L additively manufactured (AM) using the powder bed fusion (PBF) technique. Specifically, the effects of UNSM conditions on surface topology, hardness, and anti-corrosion were examined. Before UNSM treatment, the stainless steel 316L powder was processed via the PBF machine to prepare a substrate. We observed surface changes due to UNSM treatments in PBF SUS316L substrates and examined the correlation between topology changes, roughness, hardness, and anti-corrosion. After UNSM treatment, the coarse as-built surface was refined, and a regular micro-profile was implemented. Compared to the non-treated PBF sample, the waviness and roughness of the surfaces after UNSM treatment decreased by up to 56.0% and 94.5%, respectively, and decreased further as the interval decreased. The hardness improved by up to 63.0% at a maximum depth of 500 ㎛ from top surface by the UNSM treatment. The results of the corrosion test showed that the corrosion resistance of the UNSM specimens was moderately improved compared to that of the untreated surface. This study confirmed that UNSM is an effective post-processing technique for additively manufactured parts.

480~720℃에서 예민화한 STS310S, STS316L 및 STS347H의 기계적 성질 및 침지 특성 (Mechanical properties and immersion characteristics of sensitinized STS310S, STS316L and STS347H in the range of 480~720℃)

  • 김영수;이소영;도재윤;안석환;남기우
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.43-50
    • /
    • 2016
  • The current study was carried to understand the immersion characteristics and mechanical properties of heat treated stainless steels. Stainless steels (STS310S, STS316L and STS347H) were thermally treated at temperature ranges from 480 to $720^{\circ}C$. Nominal stress was determined to be slightly different depending on the heat treatment temperature. The Cr concentration in STS310S was increased at the temperatures of 600 and $660^{\circ}C$, whereas the Cr concentration in STS316L and STS347H were almost constant regardless of heat treatment temperatures. Vickers hardness was found larger as a thermal treatment temperature was increased. Immersion tests of the stainless steels were also carried out in acidic solution and alkaline solution for 240 hours. Among three different stainless steels, the pitting was detected in the acidic solution, not in the alkaline solution. The pitting of STS347H was occurred more than STS310S and STS316L.

STS 316L 교정시험편을 이용한 재가열기 튜브의 와전류신호와 초음파 IRIS 신호 특성 (Eddy Current and Ultrasonic IRIS Signal Characteristics of Reboiler Tube by Using STS 316L Calibration Specimen)

  • 탁경주;김병일;국진선
    • 비파괴검사학회지
    • /
    • 제32권1호
    • /
    • pp.56-63
    • /
    • 2012
  • 본 연구에서는 가공된 오스테나이트계 STS 316L ASME 표준 교정시험편을 이용하여 튜브 두께 감소율과 잔존두께에 대한 와전류 신호와 IRIS 신호특성을 비교하여 리보일러 튜브의 현장 적용성을 평가하였다. 그 결과 두께감소율의 경우 와전류탐상검사는 $20%{\times}4$ 평저공, 10% 외면 그루브, IRIS는 80%홈, 10%외면 그루브에서 ${\pm}15%$ 이상의 편차가 발생하였다. 잔존두께의 경우 와전류탐상은 측정치가 모두 허용범위를 만족하였으나, IRIS는 80% 인공홈에서 ${\pm}15%$ 이상의 편차가 발생하였다. 따라서 와전류탐상검사 후 의사지시에 대한 해석, 두께감소율 측정을 위해 IRIS를 수행한다면 신뢰성이 향상될 것으로 판단된다.

AISI 316L 용접부의 시그마상 형성에 영향을 미치는 크롬/니켈 당량비 (The effect of sigma phases formation depending on Cr/Ni equivalent ratio in AISI 316L austenitic stainless steel weldments.)

  • 김연희;장아영;최창현;강동훈;전재혁;변지철;정광호;이상화;이해우
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.21-21
    • /
    • 2010
  • AISI 316L 용접금속의 크롬/니켈 당량비에 따른 시그마상의 영향을 알아보기 위하여 응고모드가 다른 3종류의 플럭스 코어드 와이어를 제작하였다. AISI 316L 시편에 FCAW 프로세스를 적용한 용접재를 $650^{\circ}C$, $750^{\circ}C$, $850^{\circ}C$, $950^{\circ}C$에서 각 각 1H, 5H, 24H, 72H동안 열처리하였다. 크롬/니켈 당량비가 높을수록 즉, 크롬의 함량이 높아질수록 $\delta$-페라이트 함량은 증가하였으며, $\delta$-페라이트는 고온에서 시그마상으로 변태되었다. $\delta$-페라이트는 $650^{\circ}C$에서 가장 느리게 분해되었으며 $850^{\circ}C$에서 가장 활발히 분해되었다. 용접부의 특성상 크롬과 니켈 등의 합금원소에 의하여 응고온도범위가 넓어져 $950^{\circ}C$에서도 시그마상이 석출되었으며, 5시간 이상 유지 시 구형으로 존재하였다. 충격시험 시 시그마상에 의해 취약해진 inter-dendrite 를 따라 파면이 형성되었으며, $-100^{\circ}C$이하의 극저온에서는 시그마상의 양과 무관하게 충격흡수에너지는 0에 가까워졌다. 하지만 3%미만의 $\delta$-페라이트를 함유하는 AF모드에서 발생한 DDC와 미량의 시그마상은 충격흡수에너지에 결정적인 영향을 미치지 않았다.

  • PDF

316L(N)스테인리스강의 Monkman-Grant 크리프 수명식의 적용성 (Application of Monkman-Grant Relationships to Type 316L(N) Stainless Steel)

  • 김우곤;김대환;류우석
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2326-2333
    • /
    • 2000
  • Creep tests for type 316L(N) stainless steel were carried out using constant-load creep machines at 55$0^{\circ}C$, 575$^{\circ}C$ and $600^{\circ}C$. Material constants necessary to predict creep rupture time were obtained from the experimental creep data. And the applicability of Monkman-Grant(M-G) and modified M-G relationships was discussed. The log-log plot of M-G relationship between the rupture time($t_r$,) and the minimum creep rate ($ $\varepsilon$ _m$) was dependent on test temperatures. The slope of m was 1,05 at 55$0^{\circ}C$ and m was 1.30 at $600^{\circ}C$. On the other hand, the log-log plot of modified M-G relationship between $t_r/$\varepsilon$_r$, and $ $\varepsilon$ _m$ was independent on stresses and temperatures. That is, the slope of m' was approximately 1.35 in all the data. Thus, modified M-G relationship for creep life prediction could be utilized more reasonably than that of M-G relationship for type 316L(N) stainless steel. It was analyzed that the constant slopes regardless of temperatures or applied stresses in the modified relationship were due to an intergranular fracture grown by wedge-type cavities.

냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향 (The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel)

  • 홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

STS 316L 소결체의 부식 저항 특성에 미치는 금속산화물 첨가의 영향 (The Effect of Oxides Additives on Anti-corrosion Properties of Sintered 316L Stainless Steel)

  • 이종필;홍지현;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-277
    • /
    • 2015
  • As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$ and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above $800^{\circ}C$ at the various oxides ($SiO_2$, $Al_2O_3$, MgO and $Y_2O_3$) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at $1000^{\circ}C$ and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at $900^{\circ}C$ and $1000^{\circ}C$, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using $Y_2O_3$. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at $Y_2O_3$ added sintered stainless steel.

SUS316L 강의 초음파 비선형 특성평가를 위한 경사입사기법 (Oblique Incidence Technique for Ultrasonic Nonlinear Characterization in SUS316L Alloy)

  • 백승현;이태훈;김정석;장경영
    • 비파괴검사학회지
    • /
    • 제30권4호
    • /
    • pp.345-351
    • /
    • 2010
  • 본 연구에서는 고주기 피로를 받은 SUS316L 강에서의 초음파 비선형 특성평가를 위한 종파 경사입사기법을 연구하였다. Dog-bone형의 판상시편을 준비하여 시편 중심부에서 응력집중이 되며 각 위치마다 피로 손상이 다르도록 제작하였다. 수직투과법 외에 본 연구에서 새로이 제안한 경사입사법을 이용하여 초음파 비선형 파라미터를 측정하였다. 두 기법 모두에서 피로 손상 전보다 고주기 피로 손상 후 초음파 비선형 파라미터가 높게 나타났다. 특히, 응력 집중을 받은 시편 중심부에서 크게 증가하였다. 상대적인 초음파 비선형 파라미터는 피로 손상과 밀접한 상관성을 보였으며 결과적으로 종파를 이용한 경사입사기법은 피로 손상을 평가하는데 효과적인 기법이라 할 수 있다.