• Title/Summary/Keyword: 304L austenitic stainless steel

Search Result 33, Processing Time 0.021 seconds

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

A Study on the Corrosion Behavior of Austenitic Stainless Steel in Hot Molten Salt (오스테나이트 스테인레스강의 고온용융염 부식거동연구)

  • Jo, Su-Haeng;Park, Sang-Cheol;Jeong, Myeong-Su;Jang, Jun-Seon;Sin, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.211-216
    • /
    • 1999
  • Corrosion behavior of austenitic stainless steels of SUS 316L and SUS304L in molten salt of LiCl and $LiCl/Li_2O$ has been investigated in the temperature range of $650~850^{\circ}C$. Corrosion products of SUS316L and 304L in hot molten salt consisted of two layers-an outer layer of Li(CrFe)$O_2$and an inner layer of$Cr_2O_3$. The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl/$Li_2O$. The corrosion rate increased slowly with the increase of temperature up to $750^{\circ}C$, but above $750^{\circ}C$ rapid increase in corrosion rate observed. SUS316L stainless steel showed slower corrosion rate than SUS 304L, exhibiting higher corrosion resistance in the molten salt.

  • PDF

Low Cycle Fatigue Behaviour of AISI 304L Austenitic Stainless Steel Weldment (AISI 304L 오오스테나이트 스테인레스 강 용접부 의 Low Cycle Fatigue 거동에 관한 연구)

  • 김환태;황선효;남수우
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.49-57
    • /
    • 1984
  • The influence of weld defect, residual stress and microstructure on the Low Cycle Fatigue(L. C. F.) behaviour of AISI 304L austenitic stainless steel weldment has been studied. The specimens were welded by shielded metal are welding process, post weld heat treated(PWHT) at 900.deg.C for 1.5hrs, and tested under total strain controlled condition at room temperature. The results of the experiment showed that weld defect affected the L.C.F. behaviour of weldment deleteriously compared to the residual stress or microstructure, and it reduced the L.C.F. life about 70-80%. The PWHT exhibited beneficial effect on the L.C.F. behaviour and increased the L.C.F. life about 120%. This enhancement by PWHT was attributed to the removal of residual stress and recovery of weld metal ductility. The cyclic stress flow of as welded specimens showed intermediate cyclic softening, whereas those of heat treated specimens showed continuous cyclic hardening, and this difference was explained in terms of the residual stress removal and dislocation behaviour. Scanning electron microscopy studies of fatigue fracture surface showed that weld defects of large size and near weld surface were detrimental to the L.C.F. behaviour of weldment.

  • PDF

Effect of Deformation Temperature, Strain Rate and Grain Size on the Tensile Properties of 304L Stainless Steel (304L stainless Steel의 인장성질에 대한 변형온도, 변형속도 및 결정입도의 영향)

  • Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.20-31
    • /
    • 1990
  • This investigation has been carried out to make clear the effect of deformation temperature, strain rate and grain size on the tensile properties of 304L stainless steel. Tensile properties of the metastable austenitic 304L steel remarkably influenced by deformation temperature. Tensile strength increased with decreasing deformation temperature and the elongation showed maximum value near $40^{\circ}C$. In order to obtain the high elongation, a large amount of deformation is available in austenite before martensitic transformation and the martensite has to be induced gradually. Tensile strength and elongation increased with decreasing grain size. The temperature representing the maximum elongation shifted to low temperature and the peak width of elongation became broaden with decreasing austenite grain size. The volume fraction of strain induced martensite decreased with decreasing austenite grain size. As the strain rate increase, the temperature representing the maximum elongation value shifted to high temperature and volume fraction of strain induced martensite decreased.

  • PDF

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF

Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application

  • Seunghyun Kim;Gidong Kim;Chan Kyu Kim;Sang-Woo Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.317-327
    • /
    • 2024
  • This study investigated the chloride-induced stress corrosion cracking (CISCC) behavior expected to occur in welds of austenitic stainless steel, which are considered candidate materials for dry storage containers for spent nuclear fuel. The behavior was studied by varying temperature, relative humidity (RH), and chloride concentration. 304L-ER308L welded plates were processed into U-bend specimens and exposed to a cyclic corrosion chamber for 12 weeks. The CISCC behavior was then analyzed using electron microscopy. A previous study by the authors confirmed that CISCC occurred in ER308L at 60 ℃, 30% RH, and 0.6 M NaCl via selective corrosion of δ-ferrite. When the temperature was lowered from 60 ℃ to 50 ℃, CISCC still occurred. However, when the humidity was reduced to 20% RH, CISCC did not happen. This can be attributed to the retardation of the deliquescence of NaCl at lower humidity, which was insufficient to promote CISCC. Furthermore, increased chloride concentration to 1.0 M resulted in the absence of CISCC and widespread surface corrosion with severe pitting corrosion because of the increase in thin film thickness.

The Influence of Ar Gas in the Nitriding of Low Temperature Plasma Carburized AISI304L Stainless Steel. (AISI304L 스테인리스강의 저온 플라즈마 침탄처리 후 질화처리 시 Ar 가스가 표면 경화층에 미치는 영향)

  • Jeong, Kwang-ho;Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Conventional plasma carburizing or nitriding for austenitic stainless steels results in a degradation of corrosion resistance. However, a low temperature plasma surface treatment can improve surface hardness without deteriorating the corrosion resistance. The 2-step low temperature plasma processes (the combined carburizing and post nitriding) offers the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. In the present paper, attempts have been made to investigate the influence of the introduction of Ar gas (0~20%) in nitriding atmosphere during low temperature plasma nitriding at $370^{\circ}C$ after low temperature plasma carburizing at $470^{\circ}C$. All treated specimens exhibited the increase of the surface hardness with increasing Ar level in the atmosphere and the surface hardness value reached up to 1050 HV0.1, greater than 750 $HV_{0.1}$ in the carburized state. The expanded austenite phase (${\gamma}_N$) was observed on the most of the treated surfaces. The thickness of the ${\gamma}_N$ layer reached about $7{\mu}m$ for the specimen treated in the nitriding atmosphere containing 20% Ar. In case of 10% Ar containing atmosphere, the corrosion resistance was significantly enhanced than untreated austenitic stainless steels, whilst 20% Ar level in the atmosphere caused to form CrN in the N-enriched layer (${\gamma}_N$), which led to the degradation of corrosion resistance compared with untreated austenitic stainless steels.

Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction (용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구)

  • Kim, Tae Soo;Lee, Hoochang;Hwang, Bokyung;Cho, Taejun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Austenitic stainless steels have excellent corrosion resistance, durability and fire resistance. Especially, since STS304L among austenitic types is a low-carbon variation of STS304 and has excellent intergranular corrosion resistance, it can often be used under the welded condition without heat treatment after field welding. This paper investigated ultimate behaviors such as ultimate strength and weld metal fracture mechanism of STS304L fillet-welded connections with TIG(tungsten inert gas) welding through test results. Main variables of specimens are weld length and welding direction against loading. Fracture of specimens are classified into three modes(tensile fracture, shear fracture and block shear fracture). Ultimate strengths were compared according to the welding direction and weld length and TFW series with transverse fillet weld had the highest strength compared with other types(LFW series with longitudinal fillet weld and FW series with all round weld). It is known that current design specifications such as KBC 2016 and AISC2010 underestimated the strength of TFW and LFW specimens and provided unconservative estimates for FW specimens. Finally, strength equations were proposed considering material properties of STS 304L material.

CORROSION BEHAVIOR OF AUSTENITIC AND FERRITIC STEELS IN SUPERCRITICAL WATER

  • Luo, Xin;Tang, Rui;Long, Chongsheng;Miao, Zhi;Peng, Qian;Li, Cong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.147-154
    • /
    • 2008
  • The general corrosion behavior of austenitic and ferritic steels(316L, 304, N controlled 304L, and 410) in supercritical water is investigated in this paper. After exposure to deaerated supercritical water at $480^{\circ}C$/25 MPa for up to 500 h, the four steels studied were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS), X-ray photoelectron spectroscopy(XPS), and X-ray diffraction(XRD). The results show that the 316L steel with a higher Cr and Ni content has the best corrosion-resistance performance among the steels tested. In addition to the oxide layer mixed with $Fe_{3}O_{4}$ and $(Fe,Cr)_{3}O_{4}$ that formed on all the samples, a $Fe_{3}O_{4}$ loose outer layer was observed on the 410 steel. The corrosion mechanism of stainless steels in supercritical water is discussed based on the above results.

Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells

  • Kashkoli, Mosayeb Davoudi;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • This paper presents a semi-analytical solution for the creep analysis and life assessment of 304L austenitic stainless steel thick truncated conical shells using multilayered method based on the first order shear deformation theory (FSDT). The cone is subjected to the non-uniform internal pressure and temperature gradient. Damages are obtained in thick truncated conical shell using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The creep response of the material is described by Norton's law. In the multilayer method, the truncated cone is divided into n homogeneous disks, and n sets of differential equations with constant coefficients. This set of equations is solved analytically by applying boundary and continuity conditions between the layers. The results obtained analytically have been compared with the numerical results of the finite element method. The results show that the multilayered method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial, circumferential and shear stresses. It is shown that non-uniform pressure has significant influences on the creep damages and remaining life of the truncated cone.