• Title/Summary/Keyword: 304 SS

Search Result 77, Processing Time 0.037 seconds

A study on electrochemical protection diagrams of steel in nitric and sulfuric acid solutions (질산과 황산 용액중의 철강의 전기방식도에 관한 연구)

  • 전대희;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.43-63
    • /
    • 1989
  • Various kinds of corrosion prevention methods have been developed. It is known that the method of electrochemical protection is more effective and economical than any other method on the large scale metal structures in corrosive solutions. Strong acid solutions such as nitric and sulfuric acid solutions are often used in industries, and the expensive stainless steel is almost exclusively used for the equipment that comes in contact with such acid solutions. However, it is more reasonable that carbon steel is used rather than stainless steel depending upon concentration of those acid solutions from the economical viewpoint. In this study, the typical strong acid solution such as nitric and sulfuric acid solutions are chosen for the experiment and the selected materials of specimen are the stainless steels of SUS 304L and SUS 316L, the carbon steels of SS 41, SM 50 and RA 32, and highly pure lead. Electrochemical protection diagrams can be drawn with data from the external cathodic and anodic polarization curves of SUS 304L, SUS 316L and SM 50 steels in 5-60% nitric acid solutions and from those polarization curves of SS 41, RA 32, SM 50 and SUS 316L steels, and highly pure lead in 2.5-98% sulfuric acid solutions at the slow scanning rate. The data obtained with using the determination method of the optimum cathodic protection potential, the Tafel extrapolation method and the characteristics of anodic polarization curves. The main results obtained from the diagrams are as follows: 1) In nitric acid solution : (1) Corrosion potentials exist in each of those corrosion zones on the stainless steels in the lower concentration than about 12% solutions and on the high tensile strength steels in the lower concentration than about 30% solutions, but the corrosion current (density) in each zone is small on the above mentioned former steels and large on the latter ones. (2) The stainless steels can be self-passivated in the higher concentration than 15% solutions, and the high tensile strength steels gives rise to the same phenomenon in the higher concentration than 35% solutions. (3) The stainless steels in the lower concentration than 60% solutions and the high tensile strength steels in the higher concentration than 35% solutions can be used without protection, but the latter steels must ve protected anodically in the lower conccentration than about 30% solutions. 2) In sufuric acid solution : (1) The carbon steels can be self-passivated in the higher concentration than 45% solutions, and the SUS 316L steel in higher concentration than 75% solutions and the lead in all concentration solutions also gives rise to the same phenomenon. (2) The lead in the lower concentration than 80% solutions and the SUS 316L steel in the higher concentration than 80% solutions can be used without protection. (3) The carbon steels in the higher concentration than 50% solutions also can be used without protecting economically, but the SUS 316L steel in the 20-70% solutions are considerably corrosive without protecting anodically.

  • PDF

Analysis of the Convergent Relationship between Stress Factors and Depression Levels in a College Students (일개 대학생의 스트레스 요인 및 우울 수준의 융복합적 관련성 분석)

  • Lee, Hyun-Suk;Bae, Sang-Yun
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.219-227
    • /
    • 2019
  • This study examined the convergent relationship of stress factors related to the depression level(CES-D) of a college student. The questionnaire was used using an unregistered self-administered questionnaire for 304 students from a college located in J area from Nov. 12, 2018 to Dec. 14, 2018. The hierarchical multiple regression analysis results are as follows: The depression level of respondents turned out to be significantly higher in following groups: a group in which job seeking stress(CMI) is higher, a group in which academic burnout(MBI-SS) is higher, a group in which anxiety(BAI) are higher. The results show explanatory power of 60.7%. The results of the study indicate that the efforts, to decrease job seeking stress, to decrease academic burnout and, to decrease anxiety, are required to decrease the depression level among college students. These results can be utilized in various interventional efforts for academic counseling and guidance, job counseling, and psychological and emotional stability that lowers the depression level in college students. Following studies requires the presentation and analysis of structural models for the structural model that effects the depression levels of college students.

Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine (이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성)

  • Kim, Seong-Jong;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

LABORATORY STUDIES ON MIC OF AISI TYPE 304 STAINLESS STEEL USING BACTERIA ISOLATED FROM A W ASTEWATER TREATMENT SYSTEM

  • Sreekumari, Kurissery R.;Kyozo, Hirotani;Katsuya, Akamatsu;Takashi, Imamichi;Yasushi, Kikuchi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.260-265
    • /
    • 2002
  • Microbiologically influenced Corrosion (MIC) is one of the most deleterious effects of metal microbe interactions. When a fresh metal surface comes in contact with a non-sterile fluid, biofilm formation is ensued. This might result in the initiation of corrosion. The sites and materials where MIC is implicated are versatile. Industries such as shipping, power generation, chemical etc are reported to be affected. The rapid and unexpected failure of AISI type 304 stainless steel was investigated in the laboratory by simulation studies for a period of 4 months. Slime and water samples from the failure site were screened for corrosion causing bacteria. Both aerobic and anaerobic nora were enumerated and identified using PCR techniques. Pseudomonas sp. and Bacillus sp. were the most common aerobic bacteria isolated from the water and slime samples, whilst sulfate reducing bacteria (SRB) were the major anaerobic bacteria. The aerobic bacteria were used for the corrosion experiments in the laboratory. Coupon exposure studies were conducted using a very dilute (0.1%V/V) nutrient broth medium. The coupons after retrieval were observed under a Scanning Electron Microscope (SEM) for the presence of MIC pits. Compared to sterile controls, metal coupons exposed to Pseudomonas sp and Bacillus sp. showed the initiation of severe pitting corrosion. However, amongst these two strains, Psudomonas sp. caused pits in a very short span of 14 days. Towards the end of the experiment, severe pitting was observed in both the cases. The detailed observation of pits showed they vary both in number and shapes. Whilst the coupons exposed to Bacillus sp. showed widely spread scales like pits, those exposed to Pseudomonas sp. showed smaller and circular pits, which had grown in number and size by the end of the experiment. From these results it is inferred that the rapid and unexpected failure of 304 SS might be due to MIC. Pseudonwnas sp. could be considered as the major responsible bacteria that could initiate pits in the metallic structures. As the appearance of pits was different in both the tested strains, it was thought that the mechanisms of pit formation are different. Experiments on these lines are being continued.

  • PDF

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The mechanisms of wear are consisted of adhesion, abrasion, erosion and so on. Die wear affects the tolerances of formed parts, metal flow, and costs of process. The only way to control these failures is to develop a prediction method on die wear suitable in the design state in order to optimize the process. The wear system is used to analyse 'operating variables' and 'system structure'. In this study, with AISI D2, AISI 1020, AISI 304SS materials, a series of the wear experiments of pin-on-disk type to obtain the wear coefficients from Archard's wear model and the upsetting processes are carried out to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes are performed by the rigid-plastic finite element method. The result of the analysis is used to investigate the die wear the processes, and the analysis simulated die wear profiles are compared with the experimental measured die wear profiles.

  • PDF

Study on the Characteristics of Corrosion for Epoxy Coated Steel Structure (에폭시도막 강구조물의 부식특성에 관한 연구)

  • Lim, U-Jo;Cheun, Jeong-Hyun;Jeong, Gi-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • Recently, with the rapid development in the industries such as mechanical plants, automobiles, ships and marine structures, it is enlarged by the use of the SS 41 steel. This mechanical plants and marine structures are exposed m corrosion because of Cl-under marine environments. To protect their accidents, mainly applied anti-corrosion epoxy coating and various protective its structures. In this study, corrosion control characteristics on the epoxy coating were investigated by the galvanic corrosion of impressed voltage tester under marine environments The main results obtained are as follows; 1. Corrosion current density of amine-epoxy coating becomes more increased than that of other epoxy coating and the time area rate of pin hole and pit until 5% becomes most rapid. 2. The potential of SUS 304 stainless steel(cathode) for Al-epoxy coating is nearly zero potential. 3. Corrosion current density of Amine-epoxy by shot blast becomes more decreased than that of not shot blast and cathodic potential becomes more noble. 4. As distance of anode and cathode is more decreased, corrosion current density of epoxy coating is more increased and cathodic potential becomes less noble.

  • PDF

The Study on Temperature Measurement of Warm Needling Using Stainless Steel Needle and Gold Needle (금침과 스테인레스침을 이용한 온침에서의 부위별 온도측정 연구)

  • Yeo, Sujung
    • Korean Journal of Acupuncture
    • /
    • v.30 no.3
    • /
    • pp.178-184
    • /
    • 2013
  • Objectives : The warm needling technique is the method combining the effects of acupuncture needle with those of moxibustion. We need to standardize the characteristics of the warm needling technique, in order to get more systematic and objective results in operation and effects and then get more clinical abilities in these fields. Methods : In this study, using labview system on the warm needling technique, we measured and compared partial temperature changes according to the kind of needle. We studied relations of moxa cones of various sizes with the peak combustion temperature. Results and Conclusions: When we measured the warm needling's partial temperature, temperature measured at 1 and 2 cm below the head, according to the kind of needle, gold needle got the higher result on the peak than SS304 stainless steel needle. In the case of combustion of the moxa cones, cones weighing 0.4 g and 0.8 g, respectively, and the apex ignition method with gold needle showed the higher result than the apex ignition method with stainless steel needle, when we measured the effective stimulus time at 2 cm below the head and the mean temperature during the effective stimulus time. Although more research to standardize the characteristics of the warm needling technique will be needed, we suggest, according to these results, that warm needling of gold needle combined with moxa cone of 0.4 or 0.8 g is effective.

Influence of Cutting Pressure on Laser Cut Quality (Relationship between Cutting Pressure and Cut Quality) (레이저 절단품질에 미치는 절단압력의 영향(2) (절단압력과 절단품질간의 상관관계))

  • Yang, Yeong-Su;Na, Seok-Ju;Kim, Won-Bae;Kim, Tae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.63-70
    • /
    • 1988
  • Laser cutting system uses a gas jet to remove the molten or varpozed material from the workpiece. The quality of the laser cut can be strongly influenced by the gas flow charac- teristics formed through the nozzle. Laser cutting experiments were carried out for SS41 and SUS 304 to investigate the relationship between cut quality and cutting pressure. The cutting speed, nozzle pressure and nozzle to workpiece distance were also considered. The cut specimens were inspected by various manners such as dross observation, surface roughness test and kerf width measurement. Based on the data of pressure measurement on workpiece and the results of cut surface inspection, the influence of the considered cutting conditions on cut quality could be evaluated. The results of this study will be valuable in planning the optimal laser cutting process and in designing the laser cutting nozzle.

  • PDF

Cause of Corrosion and Evaluation of Material Corrosion Resistance on Underground Heat Transport Facilities Connected to Manhole (맨홀과 연결된 지하 열수송설비의 부식 원인 및 재질 내식성 평가)

  • Song, M.J.;Choi, G.;Kim, W.C.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • Manholes and underground spaces are installed to manage the buried heat transport pipes of the district heating system, and the corrosion damage of the equipment placed in this space often occurs. The purpose of this work is to identify locations with a high risk of corrosion damage in the air vent and to establish preventive measures based on precise analysis via sampling of heat transport pipes and air vents that have been used for about 30 years. The residual thickness of the air vent decreased significantly by reaching ~1.1 mm in thickness, and locations of 60~70 mm away from a transport pipe were the most vulnerable to corrosion. The energy dispersive X-ray spectroscopy (EDS) analysis was performed in the corroded oxides, and it was found that chloride ion was contained in the corrosion products. Anodic polarization tests were carried out on the air vent materials (SPPS250, SS304) with varying the amounts of chloride ions at two different temperatures (RT, 80℃). The higher concentration of chloride ions and temperature are, the lower corrosion resistances of both alloys are.

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF