• Title/Summary/Keyword: 3.5 GHz band

Search Result 838, Processing Time 0.03 seconds

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Study on the Retrieval of Vertical Air Motion from the Surface-Based and Airborne Cloud Radar (구름레이더를 이용한 대기 공기의 연직속도 추정연구)

  • Jung, Eunsil
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.105-112
    • /
    • 2019
  • Measurements of vertical air motion and microphysics are essential for improving our understanding of convective clouds. In this paper, the author reviews the current research on the retrieval of vertical air motions using the cloud radar. At radar wavelengths of 3 mm (W-band radar; 94-GHz radar; cloud radar), the raindrop backscattering cross-section (${\sigma}b$) varies between successive maxima and minima as a function of the raindrop diameter (D) that are well described by Mie theory. The first Mie minimum in the backscattering cross-section occurs at D~1.68 mm, which translates to a raindrop terminal fall velocity of ${\sim}5.85m\;s^{-1}$ based on the Gunn and Kinzer relationship. Since raindrop diameters often exceed this size, the signal is captured in the radar Doppler spectrum, and thus, the location of the first Mie minimum can be used as a reference for retrieving the vertical air motion. The Mie technique is applied to radar Doppler spectra from the surface-based and airborne, upward pointing W-band radars. The contributions of aircraft motion to the vertical air motion are also described and further the first-order aircraft motion corrected equation is presented. The review also shows that the separate spectral peaks due to the cloud droplets can provide independent validation of the Mie technique retrieved vertical air motion using the cloud droplets as a tracer of vertical air motion.

A Planar Implementation of a Negative Group Delay Circuit (평면 구조의 마이너스 군지연 회로 설계)

  • Jeong, Yong-Chae;Choi, Heung-Jae;Chaudhary, Girdhari;Kim, Chul-Dong;Lim, Jong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.236-244
    • /
    • 2010
  • In this paper, a planar structure negative group delay circuit(NGDC) is proposed to overcome the limited availability of the component values required for the prototype lumped element(LE) NGDC design. From the prototype LE circuit analysis, general design equations and the conditions to obtain the NGD are derived and illustrated. Then the LE circuit is converted into the planar structure by applying the transmission line resonator(TLR) theory. As a design example, the LE NGDC and the proposed planar structure NGDC are designed and compared. To estimate the commercial applicability, 2-stage reflection type planar NGDC with -5.6 ns of total group delay, -0.2 dB of insertion loss, and 30 MHz of bandwidth together with 0.1 dB and 0.5 ns of the magnitude and group delay flatness, respectively, for Wideband Code Division Multiple Access(WCDMA) downlink band is fabricated and demonstrated. Also, to show the applicability of the proposed NGDC, we have configured a simple signal cancellation loop and obtained good loop suppression performance.

Monitoring of Rice Growth by RADARSAT and Landsat TM data (RADARSAT과 Landsat TM자료를 이용한 벼 생육모니터링)

  • Hong Suk-Young;Rim Sang-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2000
  • The objective of this study is to evaluate the use of RADARSAT and Landsat TM data for the monitoring of rice growth. The relationships between backscatter coefficients($\sigma$$^{0}$ ) of RADARSAT data and digital numbers (DN) of Landsat TM and rice growth parameters were investigated. Radar backscatter coefficients were calculated by calibration process and then compared with rice growth parameters; plant height, leaf area index (LAI), and fresh and dry biomass. When radar backscatter coefficient ($\sigma$$^{0}$ ) of rice was expressed as a function of time, it is shown that the increasing trend ranged from -22--20dB to -9--8dB as growth advances. The temporal variation of backscatter coefficient was significant to interpret rice growth. According to the relationship between leaf area index and backscatter coefficient, backscatter coefficient underestimated leaf area index at the beginning of life history and overestimated, at the reproductive stage. The same increasing trend between biomass and backscatter coefficient was shown. From these results, RADARSAT data appear positive to the monitoring of rice growth. Each band of time-series Landsat TM data had a significant trend as a rice crop grows during its life cycle. Spectral indices, NDVI[(TM4-TM3)/(TM4+TM3)] and RVI(TM4/TM2), derived from Landsat TM equivalent bands had the same trend as leaf area index.

  • PDF

The Magnetic Properties of $Co_{84}\;Hf_{16}$ Thin Films by FMR (강자성공명을 이용한 $Co_{84}\;Hf_{16}$ 박막의 자기적 성질 연구)

  • 김기현;장재호;김영호
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.191-195
    • /
    • 1997
  • $Co_{84}Hf_{16}$ (1300$\AA$, 2150$\AA$) thin films were prepared by dc magnetron sputtering method. To investigate the uniaxial anisotrpy of the sample, the saturation and effective magnetization of the thin films were measured by VSM and FMR, respectively. The spectroscopic splitting g factor were estimated from the ferromagnetic resonance curves. For 1300$\AA$, 2150$\AA$, the effective magnetization was measured at the temperatures from T=77K to T=300K. The results were analyzed in terms of Bloch's law $M_s(T)=M_s(0)(1BT^{3/2}CT^{5/2}$. The Bloch coefficient B and C were determined by fitting. $M_{eff}(0)$ was obtained by extrapolating $M_{eff}$ to 0 K. From this result, the spinwave stiffness constants D was also determined and the exchange stiffness constants $A_{eff}$ were calculated by Kittel's resonance conditions.

  • PDF

EPR SPECTRA OF Mn ION WITH TWO PHASES IN THE Y-Ba-Cu-Mn-O HIGH Tc SUPERCONDUCTOR

  • Kim, Seon-Ok;Rudowicz, Czeslaw;Lee, Soo-Hyung;Yu, Seong-Cho
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.782-785
    • /
    • 1995
  • In this paper, $Mn^{2+}$ ion was doped in Y-Ba-Cu-O as an EPR probe. The following samples were prepared by conventional solid-state reaction method : $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (MN-I), annealed $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (AMN) and $YBa_{2}Cu_{2.94}Mn_{0.06}O_{7-\delta}$ (MN-II). AMN sample was obtained from MN-I by annealing for 1 hr under the Ar gas atmosphere at $600^{\circ}C$. X-band (~9.05 GHz) EPR spectra were measured from 103 K to room temperature by employing a JES-RE3X spectroscopy with a $TE_{0.11}$ cylindrical cavity and 100 kHz modulation frequency. In MN-I we have observed only the $Cu^{2+}$ signal. The fact that no $Mn^{2+}$ signal was observed, in spite of $Mn^{2+}$ being a very sensitive EPR probe, indicates that most likely isolated $Mn^{2+}$ ions don't exist in the MN-I sample. Most probably $Mn^{2+}$ ions in the MN-I sample interact antiferromagnetically and hence are EPR silent. The AMN spectra of at room temperature and 103 K indicate not only the $Cu^{2+}$ signal but also an extra signal, which increases with decreasing temperature. It is suggested that the extra signal originates from Mn ions that were antiferromagnetically coupled before the annealing process. In MN-II, from 103 K to room temperature, also, the extra signal was observed together with the $Cu^{2+}$ signal. The extra signal in MN-II, however, decreases with decreasing temperature and nearly disappears at 103 K. The signal originates from Mn ions in impurity phases that include $Mn^{2+}$ ions. We suppose that there exist at least two $Mn^{2+}$ doped phases in Y-Ba-Cu-O. The $Mn^{2+}$ signal of one phase is undectable at all temperature and that of another phase decreases with decreasing temperature and disappears around 103 K.

  • PDF

Study on the establishment of an efficient disaster emergency communication system focused on the site (현장중심의 효율적 재난통신체계 수립 방안 연구)

  • Kim, Yongsoo;Kim, Dongyeon
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.518-527
    • /
    • 2014
  • Our society is changed and diversified rapidly and such tendency is accelerated day after day and has made a lot of problems in the many fields. The important thing we have to recognize is such tendency has a bad effect recently on the safety system in Korea. So it is time to enhance the national safety system and moreover recently Sewol-ho(passenger ship) went down in the sea, it made people remind the importance of national safety system. With this incident, Korean government decided to establish the national safety communication network against the disaster. At this time, I will propose several ideas about the national safety communication network. 1. It must to be established an unified network to contact people who is on a disaster site anytime and anywhere. This is most important element on all disaster sites. 2. PS-LTE technology must to be adopted to the network because it has many advantages including various multimedia services compared to the TETRA in the past. 3. 700MHz is the most efficient band for the network because it has wide cell sites coverage compared to 1.8GHz. 4. Satellite communication system is needed to the network for back-up. 5. It will be effective to adopt Social Media to the communication network system like a Twitter or Facebook for sharing many kinds of information and notifying people of warning message. 6. It can make the network more useful to introduce the latest technology like a sensor network. And Korean government has to improve the system related to the disaster including law and operating organization.