• Title/Summary/Keyword: 3-parallel operation

Search Result 353, Processing Time 0.024 seconds

A Master and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings (다른 정격용량을 가진 3상 UPS 시스템의 병렬운전을 위한 주종제어 기법)

  • 이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • A parallel operation of Uninterruptible Power Supply(UPS) systems is used to increase power capacity of the system or to secure higher reliability at critical loads. In the conventional parallel operation, the load-sharing control to maintain the current balance is the most important, since the load-sharing is very sensitive to discord between components of each module, amplitude/phase difference, line impedance, output LC filter, and so on. To solve these problems various control algorithms are researching. However, these methods cannot apply to the different ratings of UPS. In the case, master and slave control algorithm for parallel operation is adequate. However, if the UPS ratings are different, the value of passive filters L, C is different, and it affects the sharing of current. This paper presents general problems of conventional parallel operation systems, and control strategy for parallel operation with different ratings. The validity of the proposed control strategy is investigated through simulation and experiment in the parallel operation system with two 3-phase UPS systems.

The Study of the IGBT and Stack Parallel Operation for the 1.5MVA Medium Power Inverter (1.5MVA급 중용량 인버터용 IGBT 및 Stack 병렬 운전 연구)

  • Park Geon-Tae;Jung Ki-Chan;Kim Yeon-Dal;Jung Myung-Kil;Kim Du-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.402-405
    • /
    • 2004
  • In this paper, the parallel operation of the IGBT and power stack for easy capacity enlargement series in the medium power capacity inverter system of the 660V voltage class is described. The parallel operation of the IGBT and power stack for 1.5MVA medium power inverter system's design is applied. The results of the parallel operation are described in this paper. The designed stack capacity for parallel operation is 800kVA class. For 1.5MVA inverter system, the 800kVA stack is applied with 2 parallel configurations. The 800kVA stack is designed with 3 parallel configurations of the IGBT Module. In this paper, the feasibility for easy capacity enlargement series in the medium power inverter by applying the parallel operation of the IGBT and power stack is verified. The experimental results show the good characteristics for the parallel operation of the IGBT and power stack.

  • PDF

Design of an LCL-Filter for Three-Parallel Operation of Power Converters in Wind Turbines

  • Jeong, Hae-Gwang;Yoon, Dong-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.437-446
    • /
    • 2013
  • This paper proposes a design scheme for an LCL-filter used for the three-parallel operation of the power converters in high-capacity wind turbines. The designs of the power devices and grid connected filter are difficult due to the high level voltages and currents in huge-capacity wind turbines. To solve these problem, this paper presents three-parallel operation and LCL-filter design techniques optimized by parallel operation. Furthermore, the design of an inverter side inductance of the LCL-filter is discussed in detail considering the switching modulation method. Simulation and experimental results demonstrate the validity of the designed filter and wind turbines.

Control Method for Reducing Circulating Current in Parallel Operation of DC Distribution System for Building Applications (빌딩용 DC 배전 시스템의 병렬 운전 시 발생하는 순환전류를 저감시키기 위한 제어 기법)

  • Kim, Hack-Seong;Shin, Soo-Cheol;Lee, Hee-Jun;Jung, Chul-Ho;Han, Dong-Woo;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.256-262
    • /
    • 2013
  • In the large system such DC distribution for building, the method that a number of modules converters operation in parallel is commonly used. When parallel operation, circulating current is directly related to the loss of the entire system. Accordingly, each module to share the same current is the most important for the safety of the power system. In this paper, control method for reducing circulating current in parallel operation is proposed. furthermore response and operation of steady-state with parallel system was verified by simulation and experiment results.

Parallel Operation of Three-Phase Four wire UPS using Droop Control (Droop Control을 이용한 3상 4선식 UPS의 병렬운전)

  • Kim, Hyunseob;Han, Jungho;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.88-95
    • /
    • 2013
  • A new droop control method which can be applied to 3-phase 4-wire uninterruptible power supply is proposed in this paper. The droop control method for parallel operation is very attractive one as UPS parallel operation can be carried out without any data communication devices provided among UPS systems connected, but it reportedly shows a PnP(plug-and-play) problem. A basic reason why a circulating current could flow among parallel-connected UPS systems is clearly investigated as well when droop-controlled-ups systems are operated in the manner of PnP. The proposed algorithm is deduced from the investigated result and is basically structured to keep a balanced frequency and balanced voltage profile against power variation. This paper shows that balanced parallel operation of droop control method can be obtained under unbalanced load as well as balanced load conditions when PnP operation is needed and load change occurs.

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

The Anti-islanding Scheme for a Number of Grid-connected Inverters Under Parallel Operation (병렬 연결된 다수 대 계통연계형 인버터를 위한 단독운전 방지 기법)

  • Kim, Dong-Kyune;Cho, Sang-Rae;Choy, Ick;Lee, Young-Kwoon;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.13-22
    • /
    • 2017
  • Anti-islanding scheme of grid-connected inverter is a key function of standards compliance, since unintentional islanding results in safety hazards, reliability, and many other issues. Therefore, many anti-islanding schemes have been researched, however, most of them have problems, which deteriorate performance of islanding detection under parallel-operation. Therefore, this paper proves the reason of problems and proposes a new anti-islanding scheme that has precise islanding detection under parallel-operation in single-phase and three-phase system. Finally, both simulation and experimental result validate the proposed scheme.

A Master and Slave Control Algorithm for Parallel Operation of Modular 3-Phase UPS System (모듈형 3상 무정전 전원장치의 병렬 운전을 위한 주종 제어 알고리즘)

  • Lee, Taeyeong;Cho, Younghoon;Lim, Seung Beom;Ahn, Chang Heon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.479-480
    • /
    • 2016
  • This paper introduces a master and slave control algorithm for parallel operation of UPS system. If each module of UPS system control the output voltage and filter inductor current in parallel operation, it occur unbalanced output power each module. To operate UPS system parallel, it need a algorithm that control output power of modules. A master and slave control algorithm is helpful to balance output power of modules by controlling output current. The effect of a master and slave control algorithm is proved by simulations.

  • PDF

Parallel operation of VISC system for 3[kw] solar cell (3[kw]급 태양전지 가상구현시스템의 병렬운전)

  • Lee S.Y.;Jeong B.H.;Oh B.W.;Lee B.I.;Choe G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.957-960
    • /
    • 2003
  • Many solar cell way need to be connected by series or parallel to extract the high power Especially, during parallel operation to reduce circulation current the individual converter has to share and control the load current. Generally, Current Sharing(CS) can be implemented using droop and active current sharing method. In this paper, one 3[KW] PWM converter was replaced as one 3[KW] solar cell array(3 parallels, each parallel has twenty single modules), two 3[KW] solar cell way Is Paralleled to generate 6[KW] power. Also each converter used voltage-current controller and Automatic MSCPM(Master-Slave Current-programming Method) for current sharing(AS).

  • PDF

The Parallel Operation of Each other three phase AC/DC Converter using DC Current Droop Control for Multi-parallel DC Distribution System (다병렬 직류배전 시스템의 DC전류 드룹 제어를 이용한 서로 다른 3상 AC/DC컨버터의 병렬운전기법)

  • Lee, Hee-Jun;Hong, Jin-Seok;Hyun, Seung-Wook;Kang, Jin-Wook;Kim, Han-Soo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • DC distribution system is difficult to compose the single-system because of the capacity restriction of power semiconductors. Therefore, DC Distribution system needs parallel operation of AC/DC converters for increase to system capacity. However, this system generates the circulating current. This paper is reducing the circulating current and safely sharing the load using the proposed DC current droop control method when each other 3-phase AC/DC converter connected. This system confirms through the simulation and experiment. Also, when each other converter of parallel operate. it is compared the response characteristics