• Title/Summary/Keyword: 3-nitrophenol

Search Result 76, Processing Time 0.026 seconds

Catalytic Hydrogen Transfer Reduction of Aromatic Nitro Compounds with 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 방향족 니트로 화합물의 환원반응)

  • Kim, Hong-Seok;Kim, Dong Il;Kim, Cheong-Sig;Joo, Young Je
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.871-877
    • /
    • 1994
  • Most of the aromatic nitro compounds were reduced to amines in high yield by transfer of hydrogen from 4-vinyl cyclohexene to the substrate via palladium catalyst. The usefulness of the method is not affected by the presence of a variety of other functional groups such as -OH, $-OCH_3$, $-CH_3$, $-CO_2H$, and -Cl, except for halogen which is removed during hydrogenation. The reduction of ortho-substituted nitrobenzene such as o-nitrotoluene, o-nitrophenol, o-nitroanisole was slower than the para isomer. Typically, the nitro compound is refluxed in ethanol with a large exess of 4-vinylcyclohexene in the presence of Pd-C catalyst. Under the above conditions, p-nitrobenzaldehyde, p-nitrobenzyl alcohol, and p-nitrobenzyl acetate were reduced to p-toluidine.

  • PDF

Growth Promotion of Tomato Seedlings by Applicaion of Bacillus sp. Isolated from Rhizosphere (근권에서 분리한 Bacillus sp.의 적용에 의한 토마토의 생장 촉진)

  • Lee, Kang-Hyeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Two bacterial strains isolated from soil (Bacillus subtilis strains: PS2 and RFO41) were evaluated to determine their promoting effect on the growth of tomato seedling under axonic and pot conditions. The production of phytohormone, such as indole-3-acetic acid, indole-3-butyric acid, gibberellin and zeatin by these two strains was investigated as possible mechanisms for plant growth stimulation. Both PS2 and RFO41 were shown to produce various phytohormones, and. the production of phytohormones was stimulated by the addition of peptone-rich brain heart broth medium. In addition, these bacteria exhibited high levels of phosphatase activity, which ranged from 2.18 to $2.7\;{\mu}\;{\rho}-nitrophenol/ml/hr$. PS2 and RFO41 were applied to the pot test for growth of tomato seed with phosphate. Root and shoot lengths of germinated tomato after 15 days were 45.5% and 36.5% longer than that of control in RFO41 treated samples, respectively. Baciller sp. PS2 and RFO41 may have a potential for biofertilizer in the agriculture.

Synthesis and Characterization of the Mixed-valence $[Fe^{II}Fe^{III}BPLNP(OAc)_2](BPh_4)_2$ Complex As a Model for the Reduced Form of the Purple Acid Phosphatase

  • Lee, Jae Seung;Jung, Dong J.;Lee, Ho Jin;Lee, Gang Bong;Heo, Nam Hoe;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.969-972
    • /
    • 2000
  • [Fe II Fe III $BPLNP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)ami-no)methyl]-4-nitrophenol (HBPLNP) . Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electrochemical methods. Complex 1 exhibits two strong bands at 498 nm $(\varepsilon=$ 2.6 ${\times}10^3M-^1cm-^1)$ and 1363 nm $(\varepsilon=$ 5.7 ${\times}10^2M-^1cm-^1)$ in $CH_3CN.$ These are assigned to phenolate-to-FeIII and intervalence charge-transfer transitions, respectively. NMR spectrum of complex 1 exhibits sharp isotropically shifted resonances, which number is half of those expected for a valence-trapped species, indicating that electron transfer between FeⅡ and FeⅢ centers is faster than NMR time scale at room temperature. Complex 1 undergoes quasireversible one-electron redox processes. The $FeIII_2/FeIIFeIII$ and $FeIIFeIII/FeII_2$ redox couples are at 0.807 and 0.167 V ver-sus SCE, respectively. It has Kcomp = 5.9 ${\times}$10 1s(acetato) ligand combination sta-bilizes a mixed-valence FeIIFeIII complex in the air. Interestingly, complex 1 exhibits intense EPR signals at g = 8.56, 5.45, 4.30 corresponding to mononuclear high-spin FeⅢ species, which suggest a very weak magnetic coupling between the iron centers. Magnetic susceptibility study shows that there is a very weak antiferromag-netic coupling (J = $-0.78cm-^1$, H = $-2JS_1${\times}$S_2)$ between FeII and FeIII centers. Thus, we can suggest that complex 1 has a very weak antiferromagnetic coupling between the iron centers due to the electronic effect of the nitro group in the bridging phenolate ligand.

EFFECT OF PHENOBARBITAL AND / OR SKF 525-A ON THE METABOLISM AND ACUTE TOXICITY OF PARATHION IN ADULT FEMALE PATS (자성 흰쥐의 파라치온 급성독성 및 대사에 미치는 페노바르비탈 및 SKF-525-A의 영향)

  • Choi, Jae-Hwa;Yim, Hye-Kyung;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 1990
  • Effects of altering hepatic mixed-function oxidase (MFO) enzyme activities on the metabolism and acute toxicity of parathio were investigated in adult female rats. In vitro hepatic metabolism of parathion to paraoxon was increased by phenobarbital pretreatment (50 mg/kg/day, ip, for 4 consecutive days) and SKF 525-A (50 mg/kg, ip, 1 hr prior to sacrifice) decreased paraoxon formation indicating that phenobarbital induces that form(s) of cytochrome P-450 catalyzing conversion of parathion to paraoxon. Degradation of paraoxon to p-nitrophenol was increased by phenobarbital pretreatment, but not affected by SKF 525-A suggesting that MFO activities play only a minor role in the detoxification of the active metabolite of this insecticide. The phenobarbital-induced increase in paraoxon formation was partially antagonized by SKF 525-A. Significant activity for both parathion activation and paraoxon degradation was also observed in the lung preparation, however, this extrahepatic parathion and paraoxon metabolizing activity was not induced by phenobarbital or inhibited by SKF 525-A pretreatment. Phenobarbital pretreatment increased paraoxon level in livers of rats when measured 3 hr following parathion injection (2 mg/kg, ip). SKF 525-A did not alter parathion or paraoxon levels in brain, blood and liver. Phenobarbital pretreatment decreased the toxicity of parathion (4mg/kg, ip) or paraoxon (1.5 mg/kg, ip) as determined by decreases in lethality and inhibition of brain and lung acetylcholinesterases. An additional SKF 525-A treatment failed to decrease the protective effects of phenobarbital against parathion or paraoxon toxicity. These results suggest that some unknown factors other than hepatic MFO induction are involved in the protective action of phenobarbital against parathion and paraoxon toxicity.

  • PDF

Protective Effects of Diallyl Sulfide against Thioacetamide-Induced Toxicity: A Possible Role of Cytochrome P450 2E1

  • Kim, Nam Hee;Lee, Sangkyu;Kang, Mi Jeong;Jeong, Hye Gwang;Kang, Wonku;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Effects of diallyl sulfide (DAS) on thioacetamide-induced hepatotoxicity and immunotoxicity were investigated. When male Sprague-Dawley rats were treated orally with 100, 200 and 400 mg/kg of DAS in corn oil for three consecutive days, the activity of cytochrome P450 (CYP) 2E1-selective p-nitrophenol hydroxylase was dose-dependently suppressed. In addition, the activities of CYP 2B-selective benzyloxyresorufin O-debenzylase and pentoxyresorufin O-depentylase were significantly induced by the treatment with DAS. Western immunoblotting analyses also indicated the suppression of CYP 2E1 protein and/or the induction of CYP 2B protein by DAS. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 400 mg/kg of DAS for 3 days, followed by a single intraperitoneal treatment with 100 and 200 mg/kg of thioacetamide in saline for 24 hr. The activities of serum alanine aminotransferase and aspartate aminotransferase significantly elevated by thioacetamide were protected in DAS-pretreated animals. Likewise, the suppressed antibody response to sheep erythrocytes by thioacetamide was protected by DAS pretreatment in female BALB/c mice. Taken together, our present results indicated that thioacetamide might be activated to its toxic metabolite(s) by CYP 2E1, not by CYP 2B, in rats and mice.

Transformation of Nitroaromatics and Their Reduced Metabolites by Oxidative Coupling Reaction (Oxidative Coupling에 의한 Nitroaromatics와 그 환원대사산물의 전환)

  • Ahn, Mi-Youn;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.239-245
    • /
    • 1998
  • To investigate the formation of bound residue with soil organic materials by oxidative coupling, nitroaromatics and their reduced metabolites, the insecticide parathion and the herbicide asulam were incubated with oxidoreductase, laccase or horseradish peroxidase, in the presence or absence of humic monomers. Most of aminotoluenes and amino-nitrophenols were completely transformed while most of nitrotoluenes and nitrophenols remained unchanged by a lactase or horseradish peroxidase in the presence or absence of humic monomers. Amino-nitrotoluenes were not transformed without humic monomers, but the addition of various humic monomers caused a considerable difference in the transformation of amino-nitrotoluenes by a lactase or horseradish peroxidase. Amino-nitrotoluenes were most transformed in the presence of catechol, syringaldehyde and protocatechuic acid. The insecticide parathion with nitro group and its metabolite were not mostly transformed in the presence or absence of humic monomers. The herbicide asulam with amino group remained unchanged without humic monomers as well, but the stimulating effect on the transformation of asulam was caused by the addition of catechol, syringaldehyde, protocatechuic acid or caffeic acid with a lactase.

  • PDF

Characteristics of $\beta$-Glucosidase Immobilized on the Modified Chitin in Bioresctors (수식 Chitin에 고정된 $\beta$-Glucosidase의 동특성)

  • 이경희;김종덕김병우송승구
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.279-291
    • /
    • 1990
  • Partial hydrolysed and deacetylated chitin, CHITA and CHITB as supports of immobilized enzyme were obtained by treatment of acid and base respectively. Glutaraldehyde, bifunctional reagent, was employed for crosslinking between $\beta$-glucosidase and support. Immobilized enzyme activities of CHITA-Gase and CHITB-Gase were determined with the reaction of p-nitrophenol-$\beta$-D-glucopyranoside(PNG) in batch reactor, CSTR and PFR. Their optimum temperature, pH and enzymatic characteristics including Km and Vmax values were observed with variation of the flow rates. Mass transfer coefficient(h), effectiveness factor(η), deactivation rate(kd ) of two immobilized enzymes were also examined to compare efficiency of reactors.

  • PDF

Comparison of In Vitro Cell Transformation Assay Using Murine Fibroblasts and Human Keratinocytes

  • Ahn, Jun-Ho;Park, Sue-Nie;Yum, Yung-Na;Kim, Ji-Young;Lee, Michael
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The in vitro cell transformation assays (CTA) were performed using BALB/3T3 murine fibroblasts and HaCaT human keratinocytes in order to evaluate concordance between both in vitro CTAs and carcinogenicity with compounds differing in their genotoxic and carcinogenic potential. Six test articles were evaluated, two each from three classes of compounds: genotoxic carcinogens (2-amino-5-nitrophenol and 4-nitroquinoline-N-oxide), genotoxic noncarcinogens (8-hydroxyquinoline and benzyl alcohol), and nongenotoxic carcinogens (methyl carbamate and N-nitrosodiphenylamine). Any foci of size $\geq$2 mm regardless of invasiveness and piling was scored as positive in CTA with BALB/3T3. As expected, four carcinogens regardless of their genotoxicity had positive outcomes in two-stage CTA using BALB/3T3 cells. However, of the two genotoxic noncarcinogens, benzyl alcohol was positive CTA finding. We concluded that, of the 6 chemicals tested, the sensitivity for BALB/3T3 system was reasonably high, being 100%. The respective specificity for BALB/3T3 assay was 50%. We also investigated the correlation between results of BALB/3T3 assay and results from HaCaT assay in order to develop a reliable human cell transformation assay. However, evaluation of staining at later time points beyond the confluency stage did not yield further assessable data because most of HaCaT cells were detached after $2{\sim}3$ days of confluency. Thus, after test article treatment, HaCaT cells were split before massive cell death began. In this modified protocol for this HaCaT system, growing attached colonies were counted instead of transformed foci 3 weeks since last subculture. Compared to BALB/3T3 assay, HaCaT assay showed moderate low sensitivity and high specificity. Despite these differences in specificity and sensitivity, both cell systems did exhibit same good concordance between in vitro CTA and rodent carcinogenicity findings (overall 83% concordant results). At present the major weakness of these in vitro CTA is lack of validation for regulatory acceptance and use. Thus, more controlled studies will be needed in order to be better able to assess and quantitatively estimate in vitro CTA data.

Nitrosation of U.S. E.P.A. Classified Eleven Priority Pollutant Phenols (미환경청 분류 11종 상위 환경오염 페놀들의 나이트로소화)

  • Chung, Yongsoon;Lee, Seonghoon;Motomizu, Shoji
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.393-400
    • /
    • 2004
  • Nitrosation of phenol (POH) was studied by adding hydrochloric acid and sodium nitrite to phenol solution with reaction temperature and time change. The optimum condition of nitrosation was found from the effects of hydrochloric acid and sodium nitrite concentration, reaction temperature, and reaction time changes on the production of nitrosophenol (POHNO). As a result, it was found that the optimum conditions were $5.0{\times}10^{-4}{\sim}2.0{\times}10^{-3}M$ range of $NO{_2}^-$ concentration, more than 0.10 M of HCl concentration, temperature of $80^{\circ}C$, and 3 hrs. of reaction time. In this condition, 10 U.S. E.P.A. classified priority environmental pollutant, phenols, were nitrosated. Nitrosated phenols were: POH, 2-Chlorophenol (2ClPOH), 2,4-diChlorophenol (2ClPOH), 2,4-dimethylphenol (24diMPOH), and 4-Chloro -3-methylphenol (4Cl3MPOH), and a small part of 2-nitrophenol (2NPOH). The ${\lambda}_{max}$ values of nitrosated phenols in acidic solution were around 300 nm, and those in basic solution were around 400 nm. Molar absorptivities (${\varepsilon}$) at the 400 nm of the nitrosated phenols in the basic solution were 1.5~2.0 times larger than those at 300 nm in acidic solution. It was also found by Capillary-HPLC chromatograms of the nitrosated phenol solutions that the production of the nitrosophenols were interfered by the excess concentration of nitrite (more than $3.0{\times}10^{-3}M$).

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan;Jang, Sung-Chan;Haldorai, Yuvaraj;Rethinasabapathy, Muruganantham;Oh, Seo Yeong;Rengaraj, Arunkumar;Han, Young-Kyu;Cho, Wan-Seob;Roh, Changhyun;Huh, Yun Suk
    • Carbon letters
    • /
    • v.23
    • /
    • pp.38-47
    • /
    • 2017
  • In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.