• Title/Summary/Keyword: 3-methylbutan-1-ol

Search Result 2, Processing Time 0.016 seconds

Alkyl Glycosides from the Flowers of Magnolia obovata (황목련 꽃으로부터 Alkyl Glycoside의 분리 동정)

  • Oh, Eun-Ji;Seo, Kyeong-Hwa;Kwon, Jung-Hwa;Lee, Dae-Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.233-236
    • /
    • 2015
  • The flowers of Magnolia obovata were extracted with aqueous MeOH and fractionated into EtOAc, n-BuOH, and $H_2O$ fractination. Three alkyl glycosides were isolated from the EtOAc fraction through repeated silica gel and ODS column chromatography. The structures were identified to be 2-methylbutan-1-ol-${\beta}$-$\small{D}$-galacto-pyranoside (1), 2-methylbutan-1-ol-${\beta}$-$\small{D}$-glucopyranoside (2), and 2-methylpropan-1-ol-${\beta}$-$\small{D}$-glucopyranoside (3) on the basis of spectroscopic analyses such as fast atom bombardment mass spectrometry, infrared spectroscopy, 1D nuclear magnetic resonance (NMR) ($^1H$ and $^{13}C-NMR$), and 2D NMR (gCOSY, gHSQC, and gHMBC). These compounds were isolated for the first time from the flower of M. obovata in this study.

Effects of Starter Candidates and NaCl on the Production of Volatile Compounds during Soybean Fermentation

  • Jeong, Do-Won;Lee, Hyundong;Jeong, Keuncheol;Kim, Cheong-Tae;Shim, Sun-Taek;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • We inoculated different combinations of three starter candidates, Bacillus licheniformis, Staphylococcus succinus, and Tetragenococcus halophilus, into sterilized soybeans to predict their contributions to volatile compound production through soybean fermentation. Simultaneously, we added NaCl to soybean cultures to evaluate its effect on the volatile compounds profile. Cells in soybean cultures (1.5% NaCl) nearly reached their maximum growth in a day of incubation, while cell growth was delayed by increasing NaCl concentrations in soybean cultures. The dominance of B. licheniformis and S. succinus in the mixed cultures of three starter candidates switched to T. halophilus as the NaCl concentration increased from 1.5% to 14% (w/w). Seventeen volatile compounds were detected from the control and starter candidate-inoculated soybean cultures with and without the addition of NaCl. Principal component analysis of these volatile compounds concluded that B. licheniformis and S. succinus made major contributions to producing a specific volatile compound profile from soybean cultures where both species exhibited good growth. 3-Hydroxybutan-2-one, butane-2,3-diol, and 2,3,5,6-tetramethylpyrazine are specific odor notes for B. licheniformis, and 3-methylbutyl acetate and 2-phenylethanol are specific for S. succinus. Octan-3-one and 3-methylbutan-1-ol were shown to be decisive volatile compounds for determining the involvement of S. succinus in the soybean culture containing 7% NaCl. 3-Methylbutyl acetate and 3-methylbutan-1-ol were also produced by T. halophilus during soybean fermentation at an appropriate level of NaCl. Although S. succinus and T. halophilus exhibited growth on the soybean cultures containing 14% NaCl, species-specific volatile compounds determining the directionality of the volatile compounds profile were not produced.