• Title/Summary/Keyword: 3-layer thin film

Search Result 1,315, Processing Time 0.04 seconds

Influence of gate insulator treatment on Zinc Oxide thin film transistors.

  • Kim, Gyeong-Taek;Park, Jong-Wan;Mun, Yeon-Geon;Kim, Ung-Seon;Sin, Sae-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.54.2-54.2
    • /
    • 2010
  • 최근까지는 주로 비정질 실리콘이 디스플레이의 채널층으로 상용화 되어왔다. 비정질 실리콘 기반의 박막 트랜지스터는 제작의 경제성 및 균일성을 가지고 있어서 널리 상용화되고 있다. 하지만 비정질 실리콘의 구조적인 문제인 낮은 전자 이동도(< $1\;cm^2/Vs$)로 인하여 디스플레이의 대면적화에 부적합하며, 광학적으로 불투명한 특성을 갖기 때문에 차세대 디스플레이의 응용에 불리한 점이 있다. 이런 문제점의 대안으로 현재 국내외 여러 연구 그룹에서 산화물 기반의 반도체를 박막 트랜지스터의 채널층으로 사용하려는 연구가 진행중이다. 산화물 기반의 반도체는 밴드갭이 넓어서 광학적으로 투명하고, 상온에서 증착이 가능하며, 비정질 실리콘에 비해 월등히 우수한 이동도를 가짐으로 디스플레이의 대면적화에 유리하다. 특히 Zinc Oxide의 경우, band gap이 3.4eV로써, transparent conductors, varistors, surface acoustic waves, gas sensors, piezoelectric transducers 그리고 UV detectors 등의 많은 응용에 쓰이고 있다. 또한, a-Si TFTs에 비해 ZnO-based TFTs의 경우 우수한 소자 성능과 신뢰성을 나타내며, 대면적 제조시 우수한 균일성 및 낮은 생산비용이 장점이다. 그러나 ZnO-baesd TFTs의 경우 일정한 bias 아래에서 threshold voltage가 이동하는 문제점이 displays의 소자로 적용하는데 매우 중요하고 문제점으로 여겨진다. 특히 gate insulator와 channel layer사이의 interface에서의 defect에 의한 charge trapping이 이러한 문제점들을 야기한다고 보고되어진다. 본 연구에서는 Zinc Oxide 기반의 박막 트랜지스터를 DC magnetron sputtering을 이용하여 상온에서 제작을 하였다. 또한, $Si_3N_4$ 기판 위에 electron cyclotron resonance (ECR) $O_2$ plasma 처리와 plasma-enhanced chemical vapor deposition (PECVD)를 통하여 $SiO_2$ 를 10nm 증착을 하여 interface의 개선을 시도하였다. 그리고 TFTs 소자의 출력 특성 및 전이 특성을 평가를 하였고, 소자의 field effect mobility의 값이 향상을 하였다. 또한 Temperature, Bias Temperature stability의 조건에서 안정성을 평가를 하였다. 이러한 interface treatment는 안정성의 향상을 시킴으로써 대면적 디스플레의 적용에 비정질 실리콘을 대체할 유력한 물질이라고 생각된다.

  • PDF

The electronic structure of the ion-beam-mixed Pt-Cu alloys by XPS and XANES

  • Lim, K.Y.;Lee, Y.S.;Chung, Y.D.;Lee, K.M.;Jeon, Y.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.133-133
    • /
    • 1998
  • In the thin film alloy formation of the transition metals ion-beam-mixing technique forms a metastable structure which cannot be found in the arc-melted metal alloys. Sppecifically it is well known that the studies about the electronic structure of ion-beam-mixed alloys pprovide the useful information in understanding the metastable structures in the metal alloy. We studied the electronic change in the ion-beam-mixed ppt-Ct alloys by XppS and XANES. These analysis tools pprovide us information about the charge transfer in the valence band of intermetallic bonding. The multi-layered films were depposited on the SiO2 substrate by the sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr. These compprise of 4 ppairs of ppt and Cu layers where thicknesses of each layer were varied in order to change the alloy compposition. Ion-beam-mixing pprocess was carried out with 80 keV Ae+ ions with a dose of $1.5\times$ 1016 Ar+/cm2 at room tempperature. The core and valence level energy shift in these system were investigated by x-ray pphotoelectron sppectroscoppy(XppS) pphotoelectrons were excited by monochromatized Al K a(1486.6 eV) The ppass energy of the hemisppherical analyzer was 23.5 eV. Core-level binding energies were calibrated with the Fermi level edge. ppt L3-edge and Cu K-edge XANES sppectra were measured with the flourescence mode detector at the 3C1 beam line of the ppLS (ppohang light source). By using the change of White line(WL) area of the each metal sites and the core level shift we can obtain the information about the electrons pparticippating in the intermetallic bonding of the ion-beam-mixed alloys.

  • PDF

Thickness Dependence of $SiO_2$ Buffer Layer with the Device Instability of the Amorphous InGaZnO pseudo-MOSFET

  • Lee, Se-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.170-170
    • /
    • 2012
  • 최근 주목받고 있는 amorphous InGaZnO (a-IGZO) thin film transistors (TFTs)는 수소가 첨가된 비정질 실리콘 TFT (a-Si;H)에 비해 비정질 상태에서도 높은 이동도와 뛰어난 전기적, 광학적 특성에 의해 큰 주목을 받고 있다. 또한 넓은 밴드갭에 의해 가시광 영역에서 투명한 특성을 보이고, 플라스틱 기판 위에서 구부러지는 성질에 의해 플랫 패널 디스플레이나 능동 유기 발광 소자 (AM-OLED), 투명 디스플레이에 응용되고 있다. 하지만, 실제 디스플레이가 동작하는 동안 스위칭 TFT는 백라이트 또는 외부에서 들어오는 빛에 지속적으로 노출되게 되고, 이 빛에 의해서 TFT 소자의 신뢰성에 악영향을 끼친다. 또한, 디스플레이가 장시간 동안 동작 하면 내부 온도가 상승하게 되고 이에 따른 온도에 의한 신뢰성 문제도 동시에 고려되어야 한다. 특히, 실제 AM-LCD에서 스위칭 TFT는 양의 게이트 전압보다 음의 게이트 전압에 의해서 약 500 배 가량 더 긴 시간의 스트레스를 받기 때문에 음의 게이트 전압에 대한 신뢰성 평가는 대단히 중요한 이슈이다. 스트레스에 의한 문턱 전압의 변화는 게이트 절연막과 반도체 채널 사이의 계면 또는 게이트 절연막의 벌크 트랩에 의한 것으로 게이트 절연막의 선택에 따라서 신뢰성을 효과적으로 개선시킬 수 있다. 본 연구에서는 적층된 $Si_3N_4/SiO_2$ (NO 구조) 이중층 구조를 게이트 절연막으로 사용하고, 완충층의 역할을 하는 $SiO_2$막의 두께에 따른 소자의 전기적 특성 및 신뢰성을 평가하였다. a-IGZO TFT 소자의 전기적 특성과 신뢰성 평가를 위하여 간단한 구조의 pseudo-MOS field effect transistor (${\Psi}$-MOSFET) 방법을 이용하였다. 제작된 소자의 최적화된 $SiO_2$ 완충층의 두께는 20 nm이고 $12.3cm^2/V{\cdot}s$의 유효 전계 이동도, 148 mV/dec의 subthreshold swing, $4.52{\times}10^{11}cm^{-2}$의 계면 트랩, negative bias illumination stress에서 1.23 V의 문턱 전압 변화율, negative bias temperature illumination stress에서 2.06 V의 문턱 전압 변화율을 보여 뛰어난 전기적, 신뢰성 특성을 확인하였다.

  • PDF

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Evaluation of Antioxidant Potential and UV Protective Properties of Four Bacterial Pigments

  • Rupali Koshti;Ashish Jagtap;Domnic Noronha;Shivali Patkar;Jennifer Nazareth;Ruby Paulose;Avik Chakraborty;Pampi Chakraborty
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.375-386
    • /
    • 2022
  • In the present study, four distinctly colored bacterial isolates that show intense pigmentation upon brief ultraviolet (UV) light exposure are chosen. The strains are identified as Micrococcus luteus (Milky yellow), Cryseobacterium pallidum (Yellow), Cryseobacterium spp. (Golden yellow), and Kocuria turfanensis (Pink) based on their morphological and 16S rDNA analysis. Moderate salinity (1.25%), 25-37℃ temperature, and pH of 7.2 are found to be the most favorable conditions of growth and pigment production for all the selected isolates. The pigments are extracted using methanol: chloroform (1:1) and the purity of the pigments are confirmed by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Further, Fourier transform infrared (FTIR) and UV-Visible spectroscopy indicate their resemblance with carotenoids and flexirubin family. The antioxidant activities of the pigments are estimated, and, all the pigments have shown significant antioxidant efficacy in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The UV protective property of the pigments is determined by cling-film assay, wherein, at least 25% of UV sensitive Escherichia coli survive with bio-pigments even after 90 seconds of UV exposure compared to control. The pigments also hold a good sun protective factor (SPF) value (1.5-4.9) which is calculated with the Mansur equation. Based on these results, it can be predicted that these bacterial pigments can be further developed into a promising antioxidant and UV-protectant for several biomedical applications.

New fabrication of CIGS crystals growth by a HVT method (새로운 HVT 성장방법을 이용한 CIGS 결정성장)

  • Lee, Gang-Seok;Jeon, Hun-Soo;Lee, Ah-Reum;Jung, Se-Gyo;Bae, Seon-Min;Jo, Dong-Wan;Ok, Jin-Eun;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Bae, Jong-Seong;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2010
  • The Cu$(In_{1-x}Ga_x)Se_2$ is the absorber material for thin film solar cell with high absorption coefficient of $1{\times}10^5cm^{-1}$. In the case of CIGS, the movable energy band gap from $CuInSe_2$ (1.00 eV) to $CuGaSe_2$ (1.68 eV) can be acquired while controlling Ga contain ratio. Generally, the co-evaporator method have used for development and fabrication of the CIGS absorption layer. However, this method should need many steps and lengthy deposition time with high temperature. For these reasons, in this paper, a new growth method of CIGS layer was attempted to hydride vapor transport (HVT) method. The CIGS mixed-source material reacted for HCl gas in the source zone was deposited on the substrate after transporting to growth zone. c-plane $Al_2O_3$ and undoped GaN were used as substrates for growth. The characteristics of grown samples were measured from SEM and EDS.

Top and Bottom Symmetrical Loop Antenna for Multi-media Devices (멀티미디어단말기용 상하대칭 루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2011
  • The paper is for top and bottom symmetrical phase controlled loop antenna using for multi-media devices. We developed a top and bottom phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^{\circ}$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern in $180^{\circ}$ become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a top and bottom symmetrical architecture loop pattern that bas a $180^{\circ}$ wave length in each layer. Top and bottom each layer bas a U form pattern separated $90^{\circ}$ wave length each other. This architecture cause a well balanced electro-magnetic flow control that acquired wide bandwidth resonance response in loop pattern antenna. In experiment, we designed a WCDMA mobile multi-media antenna in $40mm{\times}6mm$ area thickness 0.2mm, in that passive experiment the radiation efficiency is over 50% and over 0dBi radiation average gain was acquired, in the active experiment in real multi-media device we acquired -4dBi average gain and 43% transmit/receive efficiency.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Evaluation of the Characteristics of High-Flux Reverse Osmosis Membranes with Various Additives (다양한 첨가제에 따른 고투과성 역삼투막의 특성평가)

  • Hyun Woong Kwon;Kwang Seop Im;Gede Herry Arum Wijaya;Seong Min Han;Seong Heon Kim;Jun Ho Park;Dong Jun Lee;Sang Min Eom;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.427-438
    • /
    • 2023
  • In this study, in order to improve the performance of the reverse osmosis membrane with high water flux and high salt rejection, a study was conducted on the evaluation of characteristics according to the curing temperature and time during various additives and interfacial polymerization. The morphology of the membrane with no additives and the membrane with additives both showed a "rigid-and-valley" structure, confirming that the polyamide layer was successfully polymerized on the surface of the porous support layer. In addition, the additive of 2-Ethyl-1,3-hexanediol (EHD) had improved hydrophilicity and water flux, which was confirmed by measuring the contact angle. Finally, a highly permeable TFC membrane with NaCl and MgSO4 salt rejection of 97.78% and 98.7% and a high water flux of 3.31 L/(m2⋅h⋅bar) was prepared.

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF