• 제목/요약/키워드: 3-dimentional analysis

Search Result 71, Processing Time 0.028 seconds

Simulation study on dynamic response of precast frames made of recycled aggregate concrete

  • Pham, ThiLoan;Xiao, Jianzhuang;Ding, Tao
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.643-667
    • /
    • 2015
  • 3-dimentional precast recycled aggregate concrete (RAC) finite element models were developed by means of the platform OpenSees to implement sophisticated nonlinear model subjected to seismic loads. Efforts were devoted to the dynamic responses (including dynamic characteristics, acceleration amplifications, displacements, story drifts) and capacity curve. In addition, this study extended the prediction on dynamic response of precast RAC model by parametric study of material properties that represent the replacement percentage of recycled coarse aggregate (RCA). Principles and assumptions that represent characteristics of precast structure and influence of the interface between head of column and cast-in-place (CIP) joint on the stiffness of the joints was put forward and validated by test results. The comparison between simulated and tested results of the precast RAC frame shows a good correlation with most of the relative errors about 25% in general. Therefore, the adopted assumptions and the platform OpenSees are a viable approach to simulate the dynamic response of precast frames made of RAC.

THREE DIMENTIONAL FORCE ANALYSIS OF FORCE SYSTEM IN CONTINUOUS ARCHWIRE BY FINITE ELEMENT METHOD (CONTINUOUS ARCHWIRE의 FORCE SYSTEM에 대한 3차원 유한 요소법적 연구)

  • Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.17-32
    • /
    • 1996
  • It is important to understand the operating mechanism and force system of fixed appliance that most effective for individual tooth movement in various orthodontic appliances. The archwire system of fixed appliance is devided into 3 types, which is continuous arch, segmented arch and sectional arch. The last two types have longer interbracket distance and simple force operating points, so it is easy to control force system by operator. But the continuous arch has shorter interbracket distance and various bracket geometry, so it is hard to control and anaylze the force system. The purpose of this study was three dimentional force and moment analysis of continuous arch system by finite element method, which is similar situation to three dimentional elastic beam in structural engineering. Several sample form of various bracket geometry and artificial lower crowding typodont made by author were constructed, analyzed and compared each other. The results were as follows : 1. The force magnitude is linear proportional to the degree of displacement or tilting of the bracket. 2. The force magnitude is inversely non-linear proportional to the interbracket distance. 3. In three dimensional typodont model, while the force can be compared with that of the sample form in the area where adjacent bracket geometry is simple, the force is much more than the expected value in the area where adjacent bracket geometry is complex.

  • PDF

Failure Analysis of Deteriorated Reinforced Concrete T-Girder Bridge Subject to Cyclic Loading (정적 반복하중을 받는 노후된 철근콘크리트 T형교의 파괴해석)

  • 송하원;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.291-301
    • /
    • 1998
  • In this paper, two dimensional and three dimentional modeling techniques are proposed for the failure analysis of deteriorated reinforced concrete T-girder bridge subjected to cyclic loading up to failure. For the nonlinear failure anaysis, a tension stiffening model which can consider degradation of bond between reinforcement and surrounding concrete due to corrision of rebars in old bridge is proposed and a modeling technique for the supports conditions of the bridges which can consider degradation of bearing at supports in old bridge is also proposed, The analysis results along with comparisons with full-scale failure-test results confirm that finite element modeling techniques in this paper can be well applied to the failure analyses of in-situ old reinforced concrete T-girder bridges subjected to cyclic loading and the support condition modeling especially affects the bridge strength significantly.

Open Boundary Treatment of Nonlinear Waves in the Shallow Water Region by Boundary Element Method (경계요소법에 의한 파동장에 있어서 비선형파의 가상경계처리)

  • ;Kiyoshi Takikawa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.176-183
    • /
    • 1991
  • In this paper. boundary element method is applied to the analysis of nonlinear free surface wave. A particular concern is given to the treatment of the open boundaries at the in-flow boundary and out-flow boundary, which uses the mass-flux and energy-flux considering the continuity of fluid. By assuming the fluid to be inviscid and incompressible and the flow to be irrotational. the problem is formulated mathematically as a two-dimentional nonlinear problem in terms of a velocity potential. The equation(Laplace equation) and the boundary conditions are transformed into two boundary integral equations. Due to the nonlinearity of the problem. the incremental method is used for the numerical analysis. Numerical results obtained by the present boundary element method are compared with those obtained by the finite element method and also with experimental values.

  • PDF

A Study on Deformation Analysis of the Earth Retaining Wall (흙막이벽체의 변형해석에 관한 연구)

  • Lee, Song;Kim, Seong-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.27-36
    • /
    • 2008
  • This paper analyzed the effects related to the difference of the geometrical shape of the ground excavation by comparing the displacements of the earth retaining wall of the strut resulting from the change of the excavation breadth B and the excavation length L, adopting the three dimensional FDM analysis. It appeared that the displacement of the earth retaining wall of the strut increases in accordance with the increase of L/B and it decreases as it becomes nearer from the center to the comer where the temporary structural system forms, and the wale member is closured because of the effects of the confining effect by the closure of the earth retaining wall and the wale member. This paper proposed a formula in which the results of three dimensional FDM analysis which considers the shape of the excavation plane can be obtained from those of two dimentional FDM analysis which does not consider the shape of the excavation plane. And the results of the formula were compared with those of the site instrumentation analysis.

FEM Analysis on the PD-3 Tunnel Section (유한 요소법에 의한 터널해석(사례문제 2))

  • Kim, Gyo-Won;Eom, Gi-Yeong;Lee, Jae-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.108-122
    • /
    • 1991
  • For the tunnel pattern of PD-3, a numerical analysis using the FEM program, MrSoil, was conducted with given geotechnical properties of surrounding rockmasses to verify the analysis results by comparing with other programs. The analyzed domain was extended to the far enough distance from the excavation surface to avoid the restrained effect by the boundary condition, and the construction sequence was employed in the analysis as calculation steps to simulate the time dependent 3 dimentional behavior of surrounding ground due to tunneling. Maximum 35 mm of the tunnel crown settlement and about 13 mm of the surface settlement were computed and the amount of settlement may not give any structural damage on the concrete structures on the ground surface. The shotcrete stress of 84 kg/cm2 and the rockbolt axial force of 9 ton as a maximum are within the allowable limit. The plastic zone was restricted near the excavation surface, but forepoling around the crown may be required to prevent rock falling. It is believed that the tunnel is designed reasonablely from the economical and safety points of view.

  • PDF

A Study on the Deduction of 3-Dimmensional Visual Structure and measurement of Quantitative Openness in Accordance with Spatial Probe Routes (공간탐색경로에 따른 3차원 시각구조 도출과 정량적 개방도 측정에 관한 연구)

  • Kim, Suk-Tae
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.112-120
    • /
    • 2010
  • Human can recognize the environment by detecting spatial perception, and most of environmental perception depends on visual perception. In view that the acquisition of spatial information is accomplished through visual recognition, analysis of visual structure contained in the space is thought to be very important sector in studying the characteristic of the space. The history of studies on visual structure of space, however, wasn't too long, and furthermore most of the theories up to now focused on static and planar principles. Under this circumstance, this study is intended to suggest new theory by combining Isovist theory and VGA theory that have been actively discussed as the theory on visual perception-based spatial structure and supplementing them between each other to expand into 3-dimensional model. The suggested theory is a complex principle in dimensional and dynamic form in consideration of visual direction, which forms 3-dimentional virtual model that enables visualization of the property of spatial structure as the routine discriminating whether visual connection is made between viewing point and target point, and the target point is included in the visual field quadrangular pyramid or not. Such model was built up by an analysis application where four probe paths were applied to simulate the visual structure that occurs in virtual space, and then the characteristics were analyzed through quantification. In result, in spite of the path with equal space and equal length, significant difference in the acquired quantity of spatial information could be found depending on the probe sequence. On the contrary, it was found that probe direction may not affect the acquired quantity of information and visual property of the space.

A Study on the Three Dimentional Digital Analysis of Experimental Bite-marks with the Progress of Time (실험 교흔 조직의 경과시간에 따른 in vitro 3차원 디지털 분석 연구)

  • Bae, Eun-Jeong;Hong, Seung-Pyo;Lim, Joong Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.683-690
    • /
    • 2020
  • The objective of this study was to analyze time-dependent changes in bite marks on pig skin. Bite marks produced by the average bite force of adults were analyzed three-dimensionally for 3 hours directly after its formation, at 1-hour intervals. The measured values were calculated by root mean square (RMS) and statistically analyzed by one-way ANOVA test (α = 0.05). The average bite sizes were 0.899 mm, 0.717 mm and 0.506 mm at the first, second and third intervals, respectively, and were significantly different between the three intervals (P < 0.05). A bite mark showed time-dependent changes in the compression level, showing the greatest change in the first interval. Changes in bite marks decreased over time, and bite marks were observed most prominently generated by the anterior dentition.

3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading (3차원 수치해석을 이용한 지진 시 수직구-터널 접속부 동적 거동 분석)

  • Kim, Jung-Tae;Cho, Gye-Chun;Kang, Seok-Jun;Kim, Ki Jung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.887-897
    • /
    • 2018
  • 3D time history analysis was performed on vertical shaft-tunnel connection to provide insight into the dynamic stress-strain behavior of the connection considering the effects of soil layers, periodic characteristics and wave direction of earthquakes. MIDAS GTS NX based on FEM (Finite Element Method) was used for this study. From this study, it is revealed that the maximum displacement occurred at the upper part of the connection when the long period seismic waves propagate through the tunnel direction in soft ground. Also, stress concentration occurs due to different behaviors of vertical shaft and tunnel, and the stress concentration could be influence for safety on the connection. The results of this study could be useful for the seismic performance design of vertical shaft-tunnel connection.

The Impression of on Korean Catholic Priest's Ritual Dress (가톨릭 사제복식에 대한 인상형성 연구)

  • 김광영;조정미;남미우
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.703-714
    • /
    • 1999
  • The purpose of the present study was to identify the effect of ritual dress on korean catholic priest's impression. The subject consisted of 415 undergraduated students. The experimental materials developed for this study were 3 type color photographs stimuli of catholic priest model and 7-point sementic differential scale composed of 49 bipolar adjectives representing personal traits. The data were analyzed by factor analysis. the major findings drawn from this study were as follows : Four factors emerged to account for the dimentional structure of the impression of each dress style. Four factors were titled as open-hearted mind symbolic meaning nature of priest potency. The open-hearted mind factor was the largest throughout the 3types ritual dress. Casula had a positive effect on open-hearted mind nature of prist and negative on symbolic meaning potency. Sutan had a positive effect on open-hearted mind potency nature of priest and negative on symbolic meaning. Black suit with roman collar had a positive effect on open-hearted mind symbolic meaning nature of prist and negative on potency, Therefore the ritual dress had significant effect on korean catholic priest' impressin of open-hearted mind symbolic meaning nature of prist activity and potency

  • PDF