• 제목/요약/키워드: 3-dimensional stress

Search Result 1,325, Processing Time 0.026 seconds

Analysis on the Load Carrying Capacity of Steel Bridges Considering Initial Stress (강교의 초기응력을 고려한 내하력 해석)

  • Chang, Kyong-Ho;Kang, Jae-Hoon;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.129-136
    • /
    • 2004
  • Almost the steel bridges are manufactured and constructed by using weld process. The welding is necessary for connecting the flange, web and stiffener of steel bridges. However, residual stress and welding deformation producted by welding is a causes of decreasing the load carrying capacity of steel bridges. therefore, it is need to consider the initial stresses by welding when design the steel bridge. However, the influence of initial stress producted by welding on load carrying capacity of steel bridges is not elucidated. In this paper, the initial stress state on the flange, web and stiffener of steel bridges are clarified by carrying out 3-dimensional non-steady heat conduction analysis and 3-dimensional thermal elastic-plastic analysis. The influence of initial stress by welding on load carrying capacity of steel bridges is clarified by carrying out 3-dimensional elastic-plastic finite element analysis using finite deformation theory.

  • PDF

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.

A study on the 3-dimensional behavior of shaft by the RBM reaming (RBM 굴착에 따른 수직구의 3차원적 거동 연구)

  • 조만섭;이석원;마상준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.717-724
    • /
    • 2002
  • To investigate the behavior of air-shaft and existing tunnel by excavating the small-diameter shaft into the existing tunnel, prototype air-shaft was constructed and analyzed in this study. Geotechnical characterization was conducted by boring and rock cores obtained were tested in the laboratory. Field monitoring including radial and tangential stresses and displacements was conducted with the 3-dimensional numerical analysis of prototype air-shaft. Results of field monitoring were compared with the numerical results. The results showed that maximum displacement of 2.11mm and maximum tangential stress of 54.0 kg/$\textrm{cm}^2$ were obtained during shaft excavation near the right shoulder of the existing tunnel. The comparison of these field measurements with 3-dimensional numerical analysis showed that much more higher stress was measured during excavation compared to the numerical results even though the trends of stress and displacement were similar.

  • PDF

A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2) (철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구 (2))

  • Sung, Ki-Deug;Yang, Won-Ho;Cho, Myoung-Rae;Chung, Ki-Hyun;Kim, Cheol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.351-356
    • /
    • 2000
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate is investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF

3-Dimensional Analysis of Slope Behavior with Varying Safety Factor (안전계수 변화를 고려한 사면거동의 3차원 분석기법 연구)

  • Han, Heuisoo;Baek, Yong;Jo, Jaeho;Hwang, Changu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.19-24
    • /
    • 2010
  • Generally, slope behavior is analyzed by 2-dimensional creep model. Creep behavior shows the deformation variation as time goes by without stress increment. Convention 2-dimensional creep analysis does not have the term of stress variation, it means creep analysis could not figure out the relationship of shear strength variation according to the stress variation and displacement. The slope weight and shear strength is directly related and interlocked to the safety variation and displacement of slope, therefore, this phenomenon could be treated and analyzed as combining the hysteresis and creep, the iteration of this process will result in the slope safety. Furthermore, the combined analysis will be the slope analysis considering shear stress, displacement and shear strength with time variation. In real case, because the variation of shear stress and strength happen at the same time, they should be changed into safety factor which is function of them. This paper shows the 3-dimensional variation of unit weight of soil with hybrid analysis considering creep and hysteresis on the seepage and drainage of rainfall, futhermore variations of shear stress and strength which make the safety factor change.

Fracture analysis of weld specimen using 3-dimensional finite element method (3차원 유한요소법을 이용한 용접시편의 파괴 해석)

  • Yang Seung-Yong;Goo Byeong-choon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.385-390
    • /
    • 2005
  • A specimen with residual stress due to welding was analyzed by three-dimensional cohesive zone model. The residual stress distribution was calculated by simulating welding process, and cohesive elements were located along crack propagation planes. Crack growth is possible since two planes of the cohesive element are separated beyond a maximum load carrying capacity. Stress fields around a crack tip are compared for specimens with and without residual stresses. Load-displacement curves and crack growth behaviors are also examined.

  • PDF

Three-dimensional crack analysis by fractional linear mapping (선형분수사상을 이용한 3차원 균열해석)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-78
    • /
    • 1995
  • In this study the method of analysis for three-dimensional plane crack problem by fractional linear mapping is given. Using this method we can obtain the exact solutions of significantly different configurations of the crack. In the example image crack configurations by mapping of elliptic crack are illustrated. And the stress intensity factors along the image crack tips are calculated.

The intensity of a singular near-tip field around the vertex of a three-dimensional notch or wedge (3 차원 놋치 및 쐐기의 응력 강도계수)

  • Lee, Yong-Woo;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.157-162
    • /
    • 2003
  • Singular stress fields around three-dimensional wedges are examined, and the near-tip intensity is calculated via the two-state M-integral with the aid of the domain integral representation. A numerical example demonstrates the effectiveness and accuracy of the present scheme for computing the stress intensities of singular stresses near the generic three-dimensional wedges.

  • PDF

3-D Characteristics of the Residual Stress in the Plate Butt Weld Between SA508 and F316L SS (SA508/ F316L SS 맞대기 용접 판재의 3차원 잔류응력특성)

  • Lee, Kyoung-Soo;Kim, Tae-Ryong;Park, Jai-Hak;Kim, Man-Won;Cho, Seon-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • This study is performed to check the three dimensional characteristics of residual stress in the dissimilar metal weld. Although two dimensional analysis has been widely used for the assessment of weld residual stress, it has limitations to understand the stress distribution of the third direction. 3-D analysis was done to understand residual stress distribution of the welded plate. A simple butt-welded plate was considered to show the stress variation on all direction. A mock-up plate weldment was fabricated with SA-508 and F316L, which are widely used in nuclear power plants. The analysis results were validated with the measured values in the mock-up.

Dimensional Changes and Residual Stress of Spur Gear According to the Manufacturing Processes -Comparison of Cold Forging Part with Machining Part- (스퍼기어의 제조공정에 따른 치수변화와 잔류응력에 관한 연구 -냉간 단조기어와 기계가공기어 비교-)

  • Kwon, Y.C.;Lee, J.H.;Lee, C.M.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.575-581
    • /
    • 2007
  • The high dimensional accuracy of the cold forged part could be acquired by the accurate dimensional modification for the die, which is, the dimensional changes from the die through forged part to final part after heat treatment were considered. The experimental and FEM analysis are performed to investigate the dimensional changes from the die to final part on cold forged part, comparing with the machined gear. The dimension of forged part is compared with the die dimension at each stage, such as, machined die, cold forged part, and heat-treated-part. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the $DEFORM-3D^{TM}$. The analyzed residual stress of forged part is considered into the FE-analysis for heat treatment using the $DEFORM-HT^{TM}$. The effects of residual stress affected into the dimensional changes could be investigated by the FEA. Each residual stress of gears was measured practically by laser beam type measurement.