• Title/Summary/Keyword: 3-dimensional printing

Search Result 286, Processing Time 0.025 seconds

Three Dimensional Printing Technique and Its Application to Bone Tumor Surgery (3차원 프린팅 기술과 이를 활용한 골종양 수술)

  • Kang, Hyun Guy;Park, Jong Woong;Park, Dae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.466-477
    • /
    • 2018
  • Orthopaedics is an area where 3-dimensional (3D) printing technology is most likely to be utilized because it has been used to treat a range of diseases of the whole body. For arthritis, spinal diseases, trauma, deformities, and tumors, 3D printing can be used in the form of anatomical models, surgical guides, metal implants, bio-ceramic body reconstruction, and orthosis. In particular, in orthopaedic oncology, patients have a wide variety of tumor locations, but limited options for the limb salvage surgery have resulted in many complications. Currently, 3D printing personalized implants can be fabricated easily in a short time, and it is anticipated that all bone tumors in various surgical sites will be reconstructed properly. An improvement of 3D printing technology in the healthcare field requires close cooperation with many professionals in the design, printing, and validation processes. The government, which has determined that it can promote the development of 3D printing-related industries in other fields by leading the use of 3D printing in the medical field, is also actively supporting with an emphasis on promotion rather than regulation. In this review, the experience of using 3D printing technology for bone tumor surgery was shared, expecting orthopaedic surgeons to lead 3D printing in the medical field.

Nasoethmoid orbital fracture reconstruction using a three-dimensional printing-based craniofacial plate

  • Hyun Ki, Hong;Do Gon, Kim;Dong Hun, Choi;Anna, Seo;Ho Yun, Chung
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.6
    • /
    • pp.278-281
    • /
    • 2022
  • The face is one of the most important parts of the body. Untreated facial fractures can result in deformities that can be harmful to patients. Three-dimensional (3D) printing is a rapidly evolving technology that has recently been widely applied in the medical field as it can potentially improve patient treatment. Although 3D printing technology is mostly used for craniofacial surgery, some studies have proved that it can be used to treat nasoethmoid orbital fractures. In this study, a patient-customized plate was constructed using a 3D printer and applied in a simulated surgery for the treatment of nasoethmoid orbital fracture.

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials (3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.

Three-Dimensional Digital-Mold Modeling and Sand-Printing for Replication of Bronze Mirror

  • Jo, Young Hoon;Lee, Jungmin
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • To extend the application of digital technology to the replication of artifacts, meticulous details of the process and the diversity of three-dimensional (3D) printing output materials need to be supplemented. Thus, in this study, a bronze mirror with Hwangbichangcheon inscription was digitalized by 3D scanning, converted into a voxel model, and virtual conservation treatment was performed using a haptic device. Furthermore, the digital mold of the bronze mirror completed by Boolean modeling was printed using a 3D sand-printer. Such contactless replication based on digital technology reflects the stability, precision, expressivity, collectivity, durability, and economic feasibility of artifacts. Its application can be further extended to cultural products as well as such areas as education, exhibition, and research. It is expected to be in high demand for metal artifacts that require casting. If empirical studies through experimental research on casting are supplemented in the future, it could extend the application of digital technology-based contactless replication methods.

Effect of Pressure Based Customized 3-Dimensional Printing Insole in Pediatric Flexible Flat Foot Patients (소아 편평족 환자에서 Pressure Based Customized 3-Dimensional Printing Insole의 유용성)

  • Lee, Si-Wook;Choi, Jung-Hoon;Kwon, Hyuk-Jun;Song, Kwang-Soon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.3
    • /
    • pp.113-119
    • /
    • 2020
  • Purpose: A flatfoot that fails to form a longitudinal foot arch is a common lower limb deformity in children. This study evaluated the structural and functional effects of the insole for pediatric flexible flat foot (PFFF). Materials and Methods: Twenty-nine PFFF patients (20 boys and 9 girls, 58 feet) with bilateral symptomatic flatfoot deformities between February 2017 and May 2019 were included in this study. Sixteen patients (32 cases, study group) were treated with a pressured based 3-dimensional printing insole, and 13 patients (26 cases, control group) were followed up regularly without any treatment. Flatfoot was diagnosed by a lateral talo-first metatarsal angle of more than 4° in convex downward and talocalcaneal angles of more than 30° and a calcaneal pitch of less than 20°. The foot pressures, including the midfoot pressure, total foot pressure, and the ratio of the midfoot pressure to the total foot pressure, were evaluated by pedobarography. The clinical scores were assessed using the visual analogue scale (VAS), American Orthopaedic Foot and Ankle Society (AOFAS), and Pediatrics Outcomes Data Collection Instrument (PODCI) scores. Results: The mean age of the study group was 9.16 years, and the mean age of the control group was 7.73 years. The mean follow-up period was 16 months. The change in the lateral talocalcaneal angle was -4.664°±1.239° in the study group and -0.484°±1.513° in the control group. A significant difference in the amount of change of the lateral talocalcaneal angle was observed between the two groups (p=0.034). The midfoot pressures were similar in the two groups. Conclusion: Pressure based customized 3-dimensional printing insole in PFFF may have some effect on the hindfoot bony alignment, but it does not affect the changes in midfoot pressure.

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

Dimensional Characteristics according to Internal Density of Automotive Inner Ring in 3D Printing (3D 프린팅에서 자동차용 Inner ring의 내부밀도에 따른 치수 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.96-102
    • /
    • 2019
  • Reverse engineering involves duplicating a physical part by measuring and analyzing its physical dimensions, features, and material properties. By combining reverse engineering with three-dimensional (3D) printing, engineers can simply fabricate and evaluate functional prototypes. This design methodology has been attracting increasing interest with the advent of the Fourth Industrial Revolution. In the present study, we apply reverse engineering and 3D printing technologies to evaluate a fabricated automotive inner ring prototype. Through 3D printing, inner rings of various densities were prepared. Their physical dimensions were measured with a 3D scanning system. Of our interest was the effect of inner ring density on the physical dimensions of the fabricated prototype. We compared the design dimensions and physical dimensions of the fabricated prototypes. The results revealed that even the 20% density of inner ring was effective for 3D printing in terms of satisfying the design requirements.

3D Printing Characteristics of Reverse Idle Gears for Tractor Transmissions (트랙터 트랜스미션용 후진 아이들 기어의 3D 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This paper concerns the possibility of 3D printing reverse idle gears for tractor transmission. For the purposes of this experiment, idle gears were manufactured using a SLA 3D printer, FDM 3D printer, and through machining. The accuracy of the idle gears produced in these three different ways were evaluated by the properties of their outer diameter, inner diameter, roundness, concentricity, parallelism, span, backlash, and gear grade. The tooth characteristics of the idle gears were evaluated by their profile, lead, and the pitch of the gears. The results of this experiment determined that the surface conditions created by the finishing process had a significant impact on the dimensional accuracy of the gears and the characteristics of their teeth.