• Title/Summary/Keyword: 3-dimensional object

Search Result 670, Processing Time 0.026 seconds

Construction of 3 Dimensional Object from Orthographic Views (2차원 평면투영도로부터 3차원 물체의 구성)

  • Kim, Eung-Kon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1825-1833
    • /
    • 1990
  • This paper proposes an efficient algorithm that constructs 3-dimensional solid object from 3 orthogonal views. This algorithm inputs vertex and edge information of 3 orthogonal views and generates 2 dimensional surfaces, 3 dimensional vertices, edges and surfaces and then compares 2 dimensional projections of 3 dimensional surfaces with surfaces from othorgonal views. This algorithm is useful for CAD system, 3 dimensional scene analysis system and object modeling for real-time animation and has been implemented in C language on IRIS workstation. The effectiveness of this algorithm is shown by examples of aircrafts' models.

  • PDF

Design and Implementation of Components to Represent the 3-Dimensional+Temporal Objects (3차원+Temporal 객체를 표현하기 위한 컴포넌트 설계 및 구현)

  • Lee, Hyun Ah;Kim, Jin Suk;Ryu, Keun Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.119-132
    • /
    • 2004
  • As geographic object is consisted of 3-dimensional, it must be appropriated use the 3-dimensional coordinate system to express for exact representation. To define 3-dimensional+temporal object model we extended 3-dimensional space and valid time from object model of OpenGIS consortium that is limited to 2-dimensional space. This methodology guarantees compatibility with other systems to construct with the open model. Also, it permitted administration for two kinds of object by considering both objects whose position and shape changes discretely over time and objects whose position changes continuously. 3-dimensional+temporal object model was implemented by 3-dimensional+temporal object component using OLE/COM techniques. The interfaces of the component defined based on 3-dimensional+temporal object model. To use this component, we implement the data consumer for 3-dimensional+temporal data.

  • PDF

A Study on the Construction of a 3D Object from Orthographic Views (2차원 평행 투영도로부터 3차원 물체의 구성에 관한 연구)

  • 김응곤;박종안;김준현
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.69-72
    • /
    • 1991
  • This paper proposes an efficient algorithm that constructs 3 dimensional solid object from orthographic views. The 3D object construction algorithm inputs vertices and edges information of 3 orthogonal views, generates 2 dimensional surfaces of input views, 3 dimensional possible vertices, possible edges and possible surfaces, compares 2 dimensional projections of 3 dimensional possible surface with two dimensional surfaces from orthogonal views and then determines the solution. This algorithm has been proved to be efficient in reducing the time taken and is useful for CAD system, 3 dimensional scene analysis system and object modellings for 3D graphics. The algorithm has been implemented in C language on the IBM PC/AT.

Design of Three Dimensional Spatial Topological Relational Operators (3차원 공간 위상 관계 연산자의 설계)

  • Kim, Sang-Ho;Kang, Gu;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.211-220
    • /
    • 2003
  • As Geographic Information Systems represent three dimensional topological information, The Systems provide accurate and delicate services for users. In order to execute three dimensional topological operations, a dimensional transformation and heterogeneous spatial models should be used. However, the existing systems that use the dimensional transformation and the heterogeneous models, is not only difficult to operate the spatial operators, but also happened to support non-interoperability. Therefore, in order to solve the problems, we proposed three dimensional spatial object models that supported two dimensional object models and implemented them to show validity of the proposed models. When designing the three dimensional topological operators, we used 3DE-9IM which extended DE-9IM to support three dimensional concepts, and implemented operators on the component environment with object oriented concepts. The proposed three dimensional spatial object models and topological operators can support interoperability between systems, and execute spatial queries efficiently on three dimensional spatial objects.

3 Dimensional Object Reconstruction Using Zoom Camera (줌 카메라를 이용한 3차원 물체 재구성)

  • 주도완;김주영기수용고광식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.927-930
    • /
    • 1998
  • This paper presents a new method for reconstructing 3 dimensional object model using a zoom camera. The proposed method uses zoom images to find the distance(D) between camera and object. Also the method uses images obtained around the object to find an $angle(\theta)$ between two connected planes of the object. With the D and $\theta,$ we can reconstruct the real sized 3-D model of object with less errors without stereo camera or rangefinder.

  • PDF

Noncontact 3-dimensional measurement using He-Ne laser and CCD camera (He-Ne 레이저와 CCD 카메라를 이용한 비접촉 3차원 측정)

  • Kim, Bong-chae;Jeon, Byung-cheol;Kim, Jae-do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1862-1870
    • /
    • 1997
  • A fast and precise technique to measure 3-dimensional coordinates of an object is proposed. It is essential to take the 3-dimensional measurements of the object in design and inspection. Using this developed system a surface model of a complex shape can be constructed. 3-dimensional world coordinates are projected onto a camera plane by the perspective transformation, which plays an important role in this measurement system. According to the shape of the object two measuring methods are proposed. One is rotation of an object and the other is translation of measuring unit. Measuring speed depending on image processing time is obtained as 200 points per second. Measurement resolution i sexperimented by two parameters among others; the angle between the laser beam plane and the camera, and the distance between the camera and the object. As a result of these experiments, it was found that measurement resolution ranges from 0.3mm to 1.0mm. This constructed surface model could be used in manufacturing tools such as rapid prototyping machine.

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform (Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출)

  • 이준복;김문화;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.21-26
    • /
    • 2003
  • A new method to realize 3-dimensional object pattern recognition system using Fourier-based feature extractor has been proposed. The procedure to obtain the invariant feature vector is as follows ; A closed surface is generated by tracing the surface of object using the 3-dimensional polar coordinate. The centroidal distances between object's geometrical center and each closed surface points are calculated. The distance vector is translation invariant. The distance vector is normalized, so the result is scale invariant. The Fourier spectrum of each normalized distance vector is calculated, and the spectrum is rotation invariant. The Fourier-based feature generating from above procedure completely eliminates the effect of variations in translation, scale, and rotation of 3-dimensional object with closed-surface. The experimental results show that the proposed method has a high accuracy.

  • PDF

Study of 3-dimensional measurement of object shape by optical ring method (광링식 3차원 형상 측정법에 관한 연구)

  • 박정환;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.408-413
    • /
    • 1995
  • Nowadays, manufacturing system is trending toward integrated circumstance by helping of CAD/CAM/CAT. To use this system effectively, it is necessary to get exact 3 dimensional surface data of an object. We have been using contact method to measure 3 dimensional object profile. But his method has demerit of leaving scrach or small distortion on the object. To improve this, a non-contact measuring method using optical system is adopted. In this paper, We propose optical ring method. Withthis system, We could measure displacement of the object in the range of 45mm having 150mm having 150 .mu. m resolution with no scratch or distortion.

  • PDF

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.