• Title/Summary/Keyword: 3-dimensional analysis method

Search Result 2,716, Processing Time 0.03 seconds

Development of a Rigid- Ended beam Element and a Simplified 3-Dimensional Analysis Method for Ship Structures

  • Seo, Seung-Il;Lim, Sung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.3
    • /
    • pp.13-24
    • /
    • 1999
  • In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane element. And also, the proposed simplified 3- dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the simplified 3-dimensional method is revealed to have good computing efficiency due to unnecessity of the elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Calculation of 3-Dimensional Flow Through an Impeller of Centrifugal Compressor (원심압축기 회전차 내부의 3차원 유동해석)

  • ;;Kang, S. H.;Jeon, S. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2617-2629
    • /
    • 1995
  • The flow through a centrifugal compressor rotor was calculated using the quasi-3-dimensional and fully 3-dimensional Navier-Stokes solution methods. The calculated results, obtained during the development of the computer codes for both methods are discussed. In the inviscid quasi 3-dimensional analysis, stream function formulation was used for the blade to blade (B-B) plane calculations, and the streamline curvature method was used for the meridional (H-S) plane calculations. In the viscous 3-dimensional flow analysis, a control volume method based on a general rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. The quasi-3-dimensional analysis reasonably predicts the pressure distributions and requires much less computation time in the region where viscous effects are not strong; however, it fails to predict velocity field and loss mechanism through the impeller passage. The viscous 3-dimensional flow analysis shows reasonable pressure distributions and typical jet-wake flow field through the impeller passage. Secondary flow and total pressure distributions on cross-sectional planes explain the loss mechanisms through the impeller.

Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element (육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석)

  • Choi, Myung-Soo;Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

Rockfall and Toppling Failure Simulation of Rock Slopes using 3-Dimensional Discontinuous Deformation Analysis (3차원 불연속변형해석법을 이용한 암반사면의 낙석과 전도 파괴 시뮬레이션)

  • Hwang, Jae-Yun;Ohnishi, Yuzo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Many researches on disaster prevention using computer simulation methods can be performed to minimize the damage of property and to protect human life. Discontinuous deformation analysis (DDA) is a new computer simulation method to analyze the behavior of discontinuous rock masses. Since most rock slope problems are 3-dimensional in nature, 2-dimensional deformation analysis has limited application. In this study, the basic principles of 3-dimensional discontinuous deformation analysis are described. The newly developed 3-dimensional discontinuous deformation analysis method is proposed as the computer simulation method for discontinuous rock masses. Then, the failure behavior of rock slopes are simulated using 3-dimensional discontinuous deformation analysis. The simulation results are compared and examined with the failure behavior at the rock slopes. The results show the applicability of 3-dimensional discontinuous deformation analysis to analyze the deformation and failure mechanisms of rock slopes.

Railway vehicle dynamic analysis using an 3-dimensional wheel-rail contact analysis (3차원 휠-레일 접촉해석을 이용한 철도차량 동역학 해석)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.18-24
    • /
    • 2010
  • Conventional methods for railway vehicle dynamic analysis have mostly relied on the approximate method based on 2-dimensional contact analysis. Recently, 3-dimensional approaches to achieve an accurate solution for wheel-rail contact analysis have been proposed, but are not practical to apply to actual simulation due to time-consuming processes. The main focus of this study is to present a new method of railway vehicle dynamic analysis by calculating wheel-rail contact forces based on efficient 3-dimensional wheel-rail contact analysis. A 3-dimensional wheel-rail contact analysis and numerical analysis of wheelset dynamic equations will be presented.

  • PDF

Three-Dimensional Time Varing Magnetic Field Analysis: Using E-$\Omega$ Method (E-$\Omega$ 법을 이용한 3차익 교류 자장 해석)

  • Kim, Dong-Soo;Han, Song-Yup
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.49-52
    • /
    • 1989
  • Some limits are in two-dimensional analysis by finite element method to electromagnetic machine having finite dimension. Therefore three-dimensional analysis by finite element method, which are modeling original form of models are needed in order to gain accurate solutions. This paper present three-dimensional time varing magnetic field analysis method using electric field E and magnetic scarlar potential $\Omega$, and examine sample model.

  • PDF

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem (이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법)

  • Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • In this paper, the approximately coupled method of finite element method and boundary element method to obtain efficient and accurate analysis results is proposed for a two-dimensional elasto-static problem with a geometrically abruptly changing part. As the finite element of a two-dimensional problem, three-node and four-node plane stress element is applied, and as the boundary element of a two-dimensional problem, three-node boundary element is applied. In the modeling stage, firstly, an entire analysis target object is modeled as finite elements, and then a geometrically abruptly changing part is modeled as boundary elements. The boundary element is defined using the nodes defined for modeling finite elements. In the analysis stage, finite element analysis is firstly performed on a entire analysis target object, and boundary element analysis is automatically performed afterwards. As for the boundary conditions at boundary element analysis, displacement conditions and stress conditions, which are the results of finite element analysis, are applied. As a numerical example, the analysis results for a two-dimensional elasto-static problem, a plate with a crack, are presented and investigated.

Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures (강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용)

  • Seo, Seung Il;Lim, Seong Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.76-84
    • /
    • 1997
  • At the initial design stage, for rapid evaluation of strength of ship structures, finite element analysis using beam elements is carried out in general. In beam modeling of ship structures, brackets are usually represented by rigid elements to simplify the analysis. Extent of rigid ends, which is called as a span point, can be determined from the three kinds of view points, i.e., bending, shearing and axial deformation. In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane elements. And also, the proposed semi 3-dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the semi 3-dimensional method is revealed to have good computing efficiency due to unnecessity of elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF