• Title/Summary/Keyword: 3-deazaneplanocin A

Search Result 2, Processing Time 0.016 seconds

Melanogenesis Promotion by 3-Deazaneplanocin A, a Specific Inhibitor of S-Adenosylhomocysteine Hydrolase, in B16/F10 Melanoma Cells (B16/F10 흑색종 세포에서 S-Adenosylhomocysteine Hydrolase 의 선택적 저해제 3-Deazaneplanocin A 에 의한)

  • Hwang, Yun Jeong;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.107-121
    • /
    • 2021
  • Skin hypopigmentation, which is observed in albinism or vitiligo, occurs when melanin synthesis is decreased by genetic, epigenetic, and other factors. To identify drug candidates that can promote melanin synthesis in cells, we screened an epigenetic modulator library consisting of 141 cell-permeable, small molecule drugs. B16/F10 murine melanoma cells were treated with each drug at 0.1 𝜇M and melanin synthesis and cell viability were subsequently monitored. As a result, (-)-neplanocin A, 3-deazaneplanocin A (DZNep), and DZNep hydrochloride were found to increase cellular melanin synthesis without causing cytotoxicity. Because these three structurally related drugs exhibited similar dose-dependent effects on melanin synthesis and cell viability, DZNep was selected as a representative drug for additional experiments. DZNep increased intracellular melanin content and tyrosinase (TYR) activity. DZNep also induced the expression of TYR, tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT) at the mRNA and protein levels. DZNep also induced the mRNA and protein expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanin synthesis. DZNep is a specific inhibitor of S-adenosylhomocysteine hydrolase and it caused the accumulation of S-adenosylhomocysteine that inhibits histone methyltransferases in cells. This study suggests that melanogenesis can be modulated by targeting S-adenosylhomocysteine hydrolase in certain cellular contexts.

3-Deazaneplanocin A is a Promising Therapeutic Agent for Ovarian Cancer Cells

  • Shen, Liang;Cui, Jing;Pang, Ying-Xin;Ma, Yan-Hui;Liu, Pei-Shu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2915-2918
    • /
    • 2013
  • Background: Recent studies have shown that 3-deazaneplanocin A (DZNep), a well-known histone methyltransferase inhibitor, disrupts polycomb-repressive complex 2 (PRC2), and induces apoptosis, while inhibiting proliferation and metastasis, in cancer cells, including acute myeloid leukemia, breast cancer and glioblastoma. However, little is known about effects of DZNep on ovarian cancer cells. Materials and Methods: We here therefore studied DZNep-treated A2780 ovarian cancer cells in vitro. Proliferation of ovarian cancer cells under treatment of DZNep was assessed by MTT and apoptosis by flow cytometry. Cell wound healing was applied to detect the migration. Finally, we used q-PCR to assess the migration-related gene, E-cadherin. Results: DZNep could inhibit the proliferation of A2780 and induce apoptosis Furthermore, it inhibited migration and increased the expression of E-cadherin (P<0.05). Conclusion: DZNep is a promising therapeutic agent for ovarian cancer cells, with potential to inhibite proliferation, induce apoptosis and decrease migration.