• Title/Summary/Keyword: 3-axis accelerometer

Search Result 143, Processing Time 0.023 seconds

3-D Hand Motion Recognition Using Data Glove (데이터 글로브를 이용한 3차원 손동작 인식)

  • Kim, Ji-Hwan;Park, Jin-Woo;Thang, Nguyen Duc;Kim, Tae-Seong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.324-329
    • /
    • 2009
  • Hand Motion Modeling and Recognition (HMR) are a fundamental technology in the field of proactive computing for designing a human computer interaction system. In this paper, we present a 3D HMR system including data glove based on 3-axis accelerometer sensor and 3D Hand Modeling. Data glove as a device is capable of transmitting the motion signal to PC through wireless communication. We have implemented a 3D hand model using kinematic chain theory. We finally utilized the rule based algorithm to recognize hand gestures namely, scissor, rock and papers using the 3-D hand model.

  • PDF

A Study on the SDINS's Gyro Bias Calibration Method in Disturbances (외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

Foot Motion Estimation Smoother using Inertial Sensors (관성센서를 사용한 발의 움직임 추정용 평활기)

  • Suh, Young-Soo;Chee, Young-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.471-478
    • /
    • 2012
  • A foot motion is estimated using an inertial sensor unit, which is installed on a shoe. The inertial sensor unit consists of 3 axis accelerometer and 3 axis gyroscopes. Attitude and position of a foot are estimated using an inertial navigation algorithm. To increase estimation performance, a smoother is used, where the smoother employs a forward and backward filter structure. An indirect Kalman filter is used as a forward filter and backward filter. A new combining algorithm for the smoother is proposed to combine a forward indirect Kalman filter and a backward indirect Kalman filter. Through experiments, the estimation performance of the proposed smoother is verified.

Analysis of IMU Sensor Sensitivity According to Frequency Variation (주파수 변화에 따른 IMU 센서 민감도 분석)

  • Bugeon Lee;Seongbok Hong;Doohyun Baek;Junghyun Lim;Sanghoo Yoon
    • Journal of Integrative Natural Science
    • /
    • v.17 no.3
    • /
    • pp.113-122
    • /
    • 2024
  • Advancements in sensor technology, particularly Inertial Measurement Units (IMU), are crucial in modern pose estimation. IMUs typically consist of accelerometers and gyroscopes (6-axis), with some models including magnetometers (9-axis). This study investigates the impact of sensor frequency on pose estimation accuracy using data from a 256Hz IMU sensor. The data sets analyzed include "spiralStairs," "stairsAndCorridor," and "straightLine," with frequencies varied to 128Hz, 64Hz, and 32Hz, and conditions categorized as stationary or dynamic. The results indicate that sensitivity remains high at lower frequencies under stationary conditions but declines in dynamic conditions. Performance comparison, based on Root Mean Square Error (RMSE) values, showed that lower frequencies lead to increased RMSE, thus diminishing model accuracy. Additionally, the Extended Kalman Filter (EKF) was tested as an alternative to Madgwick's algorithm but faced challenges due to insufficient sensor noise data.

HMM-based Motion Recognition with 3-D Acceleration Signal (3차원 가속도 데이터를 이용한 HMM 기반의 동작인식)

  • Kim, Sang-Ki;Park, Gun-Hyuk;Jeon, Seok-Hee;Yim, Sung-Hoon;Han, Gab-Jong;Choi, Seung-Moon;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.216-220
    • /
    • 2009
  • In this paper we propose a motion recognition method for handheld controller 3-D acceleration signals, generated by 3 axis accelerometer in the controller, are transmitted to the computer by Bluetooth communication. We extract motion segments from continuous acceleration signals and apply to each motion model, which is trained in training phase. Hidden Markov Model was used to model each motion. We applied proposed method to three motion sets, the recognition result was good enough to practical use.

Development of Gait Event Detection Algorithm using an Accelerometer (가속도계를 이용한 보행 시점 검출 알고리즘 개발)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryoul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • The purpose of this study was to develop and automatic gait event detection algorithm using single accelerometer which is attached at the top of the shoe. The sinal vector magnitude and anterior-posterior(x-axis) directional component of accelerometer were used to detect heel strike(HS) and toe off(TO), respectively. To evaluate proposed algorithm, gait event timing was compared with that by force plate and kinematic data. In experiment, 7 subjects performed 10 trials level walking with 3 different walking conditions such as fast, preferred & slow walking. An accelerometer, force plate and 3D motion capture system were used during experiment. Gait event by force plate was used as reference timing. Results showed that gait event by accelerometer is similar to that by force plate. The distribution of differences were spread about $22.33{\pm}17.45m$ for HS and $26.82{\pm}14.78m$ for To and most error was existed consistently prior to 20ms. The difference between gait event by kinematic data and developed algorithm was small. Thus it can be concluded that developed algorithm can be used during outdoor walking experiment. Further study is necessary to extract gait spatial variables by removing gravity factor.

Research on MEMS for Motion Measurement of Solar Energy Platform at Sea (해상 태양광 부유체의 거동측정을 위한 MEMS 연구)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.328-330
    • /
    • 2018
  • A floating body with a device that converts solar energy into electrical energy is moved by waves. To evaluate the safety of a floating body, measurement and interpretation of the float motion is required, which is generally based on 6 degrees of freedom motion. The 6 degree of freedom motion can be measured using MEMS (Micro-Electro Mechanical System), which features low power, small size and low cost. The key issue is, meanwhile, the low precision of the MEMS. In this study, the safety evaluation technique by analyzing the behavior of floating body using MEMS was examined. As a result of the study, it was found that the marine floating body can be modeled through the inertial measurement platform using the 3-axis accelerometer and the 3-axis gyroscope, and the safety of the float can be evaluated through this model.

  • PDF

Human Motion Tracking With Wireless Wearable Sensor Network: Experience and Lessons

  • Chen, Jianxin;Zhou, Liang;Zhang, Yun;Ferreiro, David Fondo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.998-1013
    • /
    • 2013
  • Wireless wearable sensor networks have emerged as a promising technique for human motion tracking due to the flexibility and scalability. In such system several wireless sensor nodes being attached to human limb construct a wearable sensor network, where each sensor node including MEMS sensors (such as 3-axis accelerometer, 3-axis magnetometer and 3-axis gyroscope) monitors the limb orientation and transmits these information to the base station for reconstruction via low-power wireless communication technique. Due to the energy constraint, the high fidelity requirement for real time rendering of human motion and tiny operating system embedded in each sensor node adds more challenges for the system implementation. In this paper, we discuss such challenges and experiences in detail during the implementation of such system with wireless wearable sensor network which includes COTS wireless sensor nodes (Imote 2) and uses TinyOS 1.x in each sensor node. Since our system uses the COTS sensor nodes and popular tiny operating system, it might be helpful for further exploration in such field.

Customized Estimating Algorithm of Physical Activities Energy Expenditure using a Tri-axial Accelerometer (3축 가속도 센서를 이용한 신체활동에 따른 맞춤형 에너지 측정 알고리즘)

  • Kim, Do-Yoon;Jeon, So-Hye;Kang, Seung-Yong;Kim, Nam-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.103-111
    • /
    • 2011
  • The research has increased the role of physical activity in promoting health and preventing chronic disease. Estimating algorithm of physical activity energy expenditure was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). COUNT method has been proven through experiments of validity Freedson, Hendelman, Leenders, Yngve was implemented by applying the SVM method. A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The activity protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). These activities were repeated four weeks. Customized estimating algorithm for energy expenditure of physical activities were implemented with COUNT and SVM correlation between the data.

Estimating Algorithm of Physical Activity Energy Expenditure and Physical Activity Intensity using a Tri-axial Accelerometer (3축 가속도 센서를 이용한 신체활동 에너지 소비량과 신체활동 강도 예측 알고리즘)

  • Kim, D.Y.;Hwang, I.H.;Jeon, S.H.;Bae, Y.H.;Kim, N.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Estimating algorithm of physical activity energy expenditure and physical activity intensity was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The ActiGraph(LLC, USA) and Fitmeter(Fit.life, korea) was positioned anterior superior iliac spine on the body. The activity protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). Each activity was performed for 7 minutes with 4 minutes rest between each activity for the steady state. These activities were repeated four weeks. Algorithm for METs, kcal and intensity of activities were implemented with ActiGraph and Fitmeter correlation between the data.