• Title/Summary/Keyword: 3-axes motion

Search Result 72, Processing Time 0.023 seconds

Peak seismic response of a symmetric base-isolated steel building: near vs. far fault excitations and varying incident angle

  • Pavlidou, Constantina;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.349-365
    • /
    • 2020
  • Since the peak seismic response of a base-isolated building strongly depends on the characteristics of the imposed seismic ground motion, the behavior of a base-isolated building under different seismic ground motions is studied, in order to better assess their effects on its peak seismic response. Specifically, the behavior of a typical steel building is examined as base-isolated with elastomeric bearings, while the effect of near-fault ground motions is studied by imposing 7 pairs of near- and 7 pairs of far-fault seismic records, from the same 7 earthquake events, to the building, under 3 different loading combinations, through three-dimensional (3D) nonlinear dynamic analyses, conducted with SAP2000. The results indicate that near-fault seismic components are more likely to increase the building's peak seismic response than the corresponding far-fault components. Furthermore, the direction of the imposed earthquake excitations is also varied by rotating the imposed pairs of seismic records from 0◦ to 360◦, with respect to the major construction axes. It is observed that the peak seismic responses along the critical incident angles, which in general differ from the major horizontal construction axes of the building, are significantly higher. Moreover, the influence of 5% and 10% accidental mass eccentricities is also studied, revealing that when considering accidental mass eccentricities the peak relative displacements of the base isolated building at the isolation level are substantially increased, while the peak floor accelerations and interstory drifts of its superstructure are only slightly affected.

A study on the real-time NURBS interpolation algorithm (실시간 NURBS 보간 알고리즘에 관한 연구)

  • 최인휴;양민양
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.227-232
    • /
    • 2002
  • This paper presents an algorithm for general 2D and 3D NURBS interpolation and deals with command generation for 3 axes milling machining, including the feedrate control in order to meet two limitations, a geometrical accuracy and a dynamic restriction. Both of the maximum chordal error and the maximum acceleration specified by machine parameter lead to limit the allowable feedrate on the curvature of NURBS tool path. So, motion commands at every sampling time are continuously generated by those two limitations and programmed feedrate. Simulation results of interpolating several NURBS curves show that proposed NURBS algorithm is favorable in the machining free-form curve

  • PDF

Measurement of Leukocyte Motions in a Microvessel Using Spatiotemporal Image Analysis

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2008
  • This paper describes a method for recognizing and measuring the motion of each individual leukocyte in microvessel from a sequence of images. A spatiotemporal image is generated whose spatial axes are parallel and vertical to vessel region contours. In order to enhance and extract only leukocyte traces with a turned velocity range even under noisy background, we use a combination of a filtering process using Gabor filters with sharp orientation selectivity and a subsequent 3D spatiotemporal grouping process. The proposed method is shown to be effective by experiments using image sequences of two kinds of microcirculation, rat mesentery microvessels and human retinal capillaries.

Strength Evaluation of Sin91e-Radius Total Knee Replacement (TKR) (인공무릎관절의 단축법위 회전시 근력정가)

  • Wan, Jin-Young;Sub, Kwak-Yi
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.484-489
    • /
    • 2004
  • Artificial joint replacement is one of the major surgical advances of the 21th century. The primary purpose of a TKA (Total Knee Arthroplasty) is to restore normal knee Auction. Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from a chair or climbing stairs;(b) allow the same range of motion as an complete knee; and (c) provide adequate knee joint stability. Four individuals (2 peoples after surgery one year and 2 peoples after surgery three years) participated in this study. All they were prescreened for health and functional status by the same surgeon who performed the operations. Two days of accommodation practice occurred prior to the actual strength testing. The isometric strength (KIN-COM III) of the quadriceps and hamstring were measured at 60$^\circ$ and 30$^\circ$ of knee flexion, respectively. During isokinetic concentric testing, the range of motion was between 10$^\circ$ to 80$^\circ$ of knee flexion (stand-to-sit) and extension (sit-to-stand). for a given test, the trial exhibiting maximum torque was analyzed. A 16-channel MYOPACTM EMG system (Run Technologies, Inc.) was used to collect the differential input surface electromyographic (EMG) signals of the vastus medialis (VM), vastus lateralis(VL), rectus femoris (RF) during sit-to-stand and stand-to-sit tests. Disposable electrodes (Blue SensorTM, Medicotest, Inc.) were used to collect the EMG signals. The results were as follows; 1. Less maximum concentric (16% and 21% less for 1 yew man and 3 years mm, respectively) and isometric (12% and 29%, respectively) quadriceps torque for both participants. 2.14% less maximum hamstrings concentric torque for 1 year man but 16% greater torque for 3 years mm. However, 1 year man had similar hamstring isometric peak torque for both knees. 3. Less quadriceps co-contraction by 1 year man except for the VM at 10$^\circ$-20$^\circ$ and 30$^\circ$-50$^\circ$ range of knee flexion.

Design and implementation of a 3-axis Motion Sensor based SWAT Hand-signal Motion-recognition System (3축 모션 센서 기반 SWAT 수신호 모션 인식 시스템 설계 및 구현)

  • Yun, June;Pyun, Kihyun
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2014
  • Hand-signal is an effective communication means in the situation where voice cannot be used for expression especially for soldiers. Vision-based approaches using cameras as input devices are widely suggested in the literature. However, these approaches are not suitable for soldiers that have unseen visions in many cases. in addition, existing special-glove approaches utilize the information of fingers only. Thus, they are still lack for soldiers' hand-signal recognition that involves not only finger motions, but also additional information such as the rotation of a hand. In this paper, we have designed and implemented a new recognition system for six military hand-signal motions, i. e., 'ready', 'move', quick move', 'crawl', 'stop', and 'lying-down'. For this purpose, we have proposed a finger-recognition method and motion-recognition methods. The finger-recognition method discriminate how much each finger is bended, i. e., 'completely flattened', 'slightly flattened', 'slightly bended', and 'completely bended'. The motion-recognition algorithms are based on the characterization of each hand-signal motion in terms of the three axes. Through repetitive experiments, our system have shown 91.2% of correct recognition.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

A Study on the Motion Analysis and Lead-Filter Design for High Speed/Accuracy Movement of Gantry Robot (갠트리 로봇의 고속/고정밀 이송을 위한 모션분석 및 앞섬필터 설계)

  • Kim, Jin-Dae;Cho, Che-Seung;Lee, Hyuk-Jin;Shin, Chan-Bai;Park, Chul-Hu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently gantry-type robot with 3 axes rectangular coordinates have been studied in the many industrial production equipment and machinery fields. To acquire a good handling and motion performance of this robot, reducing the settling-time and securing the accurate-transfer positioning under high-speed conditions should be required. However when robot is moved in high-speed, the large inertia of robot can lead to serious vibration of robot's head. The time-delayed control characteristics of this robot can also lead to tracking error. In this research, the analysis of the effects of higher order positional-profile is carried out to assure high-speed performance and stiffness specifications. To remove the residual vibration caused by kinematic coupling effect of dual-servo gantry, we develop a dual-servo gantry of rotary type that moving frame of x-axis rotates about z-axis. In order to decrease the tracking error, the 3 type lead-filter through system identification was applied respectively. From the experimental results, it was shown that zero-order series leader-filter has the best performance about tracking error and settling time.

Development of Educational 6-axis Articulated Manipulator Using 4-bar Linkage (4-bar Linkage를 이용한 교육용 6축 수직 다관절 로봇 개발)

  • 김대영;김성현;박정미;정원지
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.524-527
    • /
    • 2002
  • This paper is on the development of an educational 6-axis articulated manipulator using 4-bar linkage system. Especially, the 2$^{nd}$ and the 3$^{rd}$ axes need large torque to control the movement of an end-effect. However, small motors (RC-servo, DC-gear, stepping meters) are used for the 4-bar linkage. In addition the manipulator can be operated by a switch and also motion can be realized automatically, based on C-language coded users programs..

  • PDF

Design and Manufacture of Road Simulator for Suspension Durability Test (서스펜션 내구시험용 Road Simulator의 설계 및 제작)

  • 최경락;황성호;전승배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.155-160
    • /
    • 2001
  • The road simulator system can simulate the longitudinal, lateral, and vertical movement changed by road conditions and vehicle dynamic characteristics while driving. This system provides the durability evaluation of vehicle suspensions. The system consists of hydraulic actuators, link mechanism, and servo controller. The hydraulic actuators are specially manufactured using low friction seals to endure high speed movement. The link mechanism is designed in order to minimize the dynamic effect during motion and remove the interference between 3axes actuators. The servo controller is composed of sensors, sensor amplifiers - displacement transducers and load cells, and an industrial PC with DSP board which calculates the control algorithm to control hydraulic actuators. The test results are included to evaluate the performance of this simulator comparing vehicle driving test.

  • PDF

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.