• Title/Summary/Keyword: 3-axes loading system

Search Result 4, Processing Time 0.016 seconds

Analysis of Failure Behavior of the Box Culvert with 3-Axes Loading System (3축 가력시스템에 의한 박스형 암거의 파괴거동 분석)

  • Woo, Sang-Kyun;Kwon, Yong-Gil;Cho, Jun-Hyong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.142-148
    • /
    • 2009
  • This paper is to investigate the fracture behavior characteristics of box culvert and incremental crack width of upper slab for the incremental loading by the 3-axis loading system. In the 3-axes loading system, loading directions are upper side, left and right side which simulate earth pressure and static traffic load. With the incremental load, crack patterns is investigated on the upper slab, left and right wall. Especially, on the upper slab, crack width is measured by crack gage. Based on the experimental results, structural internal force indices of box culvert are estimated quantitatively.

Least Squares Method-Based System Identification for a 2-Axes Gimbal Structure Loading Device (2축 짐벌 구조 적재 장치를 위한 최소제곱법 기반 시스템 식별)

  • Sim, Yeri;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.288-295
    • /
    • 2022
  • This study shows a system identification method of a balancing loading device for a stair climbing delivery robot. The balancing loading device is designed as a 2-axes gimbal structure and is interpreted as two independent pendulum structures for simplifying. The loading device's properties such as mass, moment of inertia, and position of the center of gravity are changeable for luggage. The system identification process of the loading device is required, and the controller should be optimized for the system in real-time. In this study, the system identification method is based on least squares method to estimate the unknown parameters of the loading device's dynamic equation. It estimates the unknown parameters by calculating them that minimize the error function between the real system's motion and the estimated system's motion. This study improves the accuracy of parameter estimation using a null space solution. The null space solution can produce the correct parameters by adjusting the parameter's relative sizes. The proposed system identification method is verified by the simulation to determine how close the estimated unknown parameters are to the real parameters.

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.