• Title/Summary/Keyword: 3-axes Acceleration Sensor

Search Result 11, Processing Time 0.026 seconds

Signal processing of accelerometers for motion capture of human body (인체 동작 인식을 위한 가속도 센서의 신호 처리)

  • Lee, Ji-Hong;Ha, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.961-968
    • /
    • 1999
  • In this paper we handle a system that transform sensor data to sensor information. Sensor informations from redundant accelerometers are manipulated to represent the configuration of objects carrying sensors. Basic sensor unit of the proposed systme is composed of 3 accelerometers that are aligned along x-y-z coordination axes of motion. To refine the sensor information, at first the sensor data are fused by geometrical optimization to reduce the variance of sensor information. To overcome the error caused from inexact alignment of each sensor to the coordination system, we propose a calibration technique that identifies the transformation between the coordinate axes and real sensor axes. The calibration technique make the sensor information approach real value. Also, we propose a technique that decomposes the accelerometer data into motion acceleration component and gravity acceleration component so that we can get more exact configuration of objects than in the case of raw sensor data. A set of experimental results are given to show the usefulness of the proposed method as well as the experiments in which the proposed techniques are applied to human body motion capture.

  • PDF

A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor (스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

Performance Improvement of an AHRS for Motion Capture (모션 캡쳐를 위한 AHRS의 성능 향상)

  • Kim, Min-Kyoung;Kim, Tae Yeon;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1167-1172
    • /
    • 2015
  • This paper describes the implementation of wearable AHRS for an electromagnetic motion capture system that can trace and analyze human motion on the principal nine axes of inertial sensors. The module provides a three-dimensional (3D) attitude and heading angles combining MEMS gyroscopes, accelerometers, and magnetometers based on the extended Kalman filter, and transmits the motion data to the 3D simulation via Wi-Fi to realize the unrestrained movement in open spaces. In particular, the accelerometer in AHRS is supposed to measure only the acceleration of gravity, but when a sensor moves with an external linear acceleration, the estimated linear acceleration could compensate the accelerometer data in order to improve the precision of measuring gravity direction. In addition, when an AHRS is attached in an arbitrary position of the human body, the compensation of the axis of rotation could improve the accuracy of the motion capture system.

The Running Vibration Assessment of Daegu Metropolitan Transit using Smartphone Acceleration Sensor (스마트폰 가속도센서를 이용한 대구도시철도 주행진동평가)

  • Kwon, Dong-Hee;Jang, Sung-Hyun;Mun, Hyung-Jin;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.179-184
    • /
    • 2019
  • Recently, various problems have arisen due to the popularization and aging of urban railway transit, which is the key transportation of large cities. In this study, the vibrational accelerations for the Daegu Metropolitan City Urban Railway(Line 1) were measured and evaluated using the smartphone built-in acceleration sensor and the approved application. For this purpose, the three axes running accelerations were measured according to the domestic standard (KS R 9160), and the acceleration data along the 32 stations (3 directions) were analyzed and compared. In addition, the increasing of acceleration values caused by the change of vibrational environment was monitored along the main stations between the time in 1997 and 2017. It was found that there are considerable increase of lateral and vertical directional accelerations due to the aging of railway facility environment for the last 20 years. The results of this study have valuable means for evaluating the ride quality of urban railway and the vibration influence on surrounding structures.

Development of Vehicle Oriented Black Box System Based on U-Healthcare and Human-Free Guard Functions

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The vehicle oriented block box system based on the u-healthcare and the human-free guard functions is developed in this paper. We also suggested the design philosophies, ideas, and analyzed the performance of the suggested system. The developed vehicle oriented black box system has some characteristics such as; 1) detects the dangerous situation by ultrasonic sensor in advance, and stores the situation information of the neighborhood of the vehicle to the imbedded SD memory card if the dangerous situation may be occurred in the parked vehicle; 2) detects the present location and speed information of the vehicle by GPS receiver and 3-axes acceleration sensor, and stores the information to the SD memory card periodically if the vehicle is running; 3) measures the dioxide carbon in the vehicle inside using $CO_2$ sensor, and forces the ventilation motor of the vehicle to operate and maintains the driver's health if the measured level is more than standard health requirements; 4) provides the stored vehicle's operating information to the driver by GUI (Graphical User Interface) based touch LCD monitor.

  • PDF

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.

Preliminary ADHD Symptom of the Hyperactivity Diagnosis Service Using Ubiquitous Technology (Ubiquitous Technology를 이용한 주의력결핍 과잉행동장애 증상 중 과잉활동증 아동 예진 서비스)

  • Shin, You-Min;Yang, Jae-Soo;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • The purpose of this study was to detect early children with hyperactivity which is one of the symptoms of Attention Deficit-Hyperactivity Disorder (ADHD). This study used two methods: K-CBCL and observation of children's behavior. K-CBCL was done online by parents at home. For observation of children's behavior, the school asked children to wear a 3-axis accelerometer on their wrists. The data from K-CBCL and 3-axis accelerometer were analyzed and clustered to separate hypersensitive children from ordinary children. This experiment confirmed that 3-axis accelerometer which is one of Ubiquitous techniques and the K-CBCL questionnaire were helpful for detection of hypersensitive children.

u-Children's Physical and Mental Health Wellness Care Service Design and Implementation (u-아동 신체 & 정선 건강 Wellness Care Service 설계 및 구현)

  • Shin, You-Min;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.28-37
    • /
    • 2010
  • In this study, services for promoting health were provided to kindergarten children. As u-Health services for children, services centered of positioning of children are provided. However, since problems related with obesity and mental health are increasing day by day due to westernized eating habits, the necessity of physical and mental health care for children is on the rise. Considering this state, in this study, experiments of u-Health services under the concept of wellness were conducted on kindergarten children. For physical health, the children's obesity was controlled and for mental health, services of diagnosing hyperactivity disorder which is a sub symptom of ADHD were provided. Based on the results, it could be identified that parents' satisfaction and children's health conditions were improved.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.