• Title/Summary/Keyword: 3-Noded Curved Beam Element

Search Result 4, Processing Time 0.018 seconds

In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element (3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석)

  • Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF

Free Vibration Analysis of Thin-walled Curved Beams with Unsymmetric Cross-section (비대칭 단면을 갖는 박벽 곡선보의 자유진동 해석)

  • 김문영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1999
  • For free vibration of non-symmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for in-plane free vibration behaviors of simply supported thin-walled curved beams with monosymmetric cross-sections is newly derived. Also, a finite element formulation using two noded curved beams element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the straight beam element and the ABAQUS's shell element.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

An Assumed Strain Beam Element for Spatial Post-Buckling Analysis of Non-symmetric and Shear Flexible Thin-Walled Beams (박벽보의 3차원 후좌굴 해석을 위한 Locking-Free 보요소)

  • Lee, Kyoung-Chan;Kim, Moon-Young;Park, Jung-Il;Chang, Sung-Pil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.719-730
    • /
    • 2007
  • This study presents a thin-walled space frame element based on the classical Timoshenko beam theory. The element is derived according to the assumed strain field in order to resolve the shear-locking phenomenon. The shape function is developed in accordance with the strain field which is assumed to be constant at a 2-noded straight frame element. In this study, the geometrically nonlinear analysis applies the Corotational procedure in order to evaluate unbalanced loads. The bowing effect is also considered faithfully. Two numerical examples are given; monosymmetric curved and nonsymmetric straight cantilever. When these example structures behave lateral-torsional bucking, the critical loads are obtained by this study and ABAQUS shell elements. Also, the post-buckling behavior is examined. The results give good agreement between this study and ABAQUS shell.