• Title/Summary/Keyword: 3-Hydroxyamide

Search Result 11, Processing Time 0.018 seconds

A Facile Synthetic Method of 2-Oxaxolidinones and 1,3-Oxazine-2-ones, Essential Moieties of New Antiulcer Agent

  • Park, Min-Soo;Lee, Jae-Won
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.158-160
    • /
    • 1993
  • 2-Oxazolidinones and 1,3-oxazine-2-ones, key moieties of new antiulcer agents, were prepared successfully by treating corresponding hydroxyamide with N-bromosuccinimide (NBS) and silveracetate in acetonitrile. From the fact that the methods for the preparation of hydoxy amides are versatile and such amides could be converted to the corresponding 2-oxazolid-iones and 1,3-oxazine-2-one under our reaction condition, we think that our method is very practical one for the preparation of such compounds. In addition, the above synthetic example affords a good evidence of the synthetic applicability of our improved Hofmann rearrangement.

  • PDF

Synthesis and Thermal Properties of Aromatic Poly(o-hydroxyamide)s Containing Phenylene Diimide Unit (Phenylene Diimide 단위를 포함한 방향족 Poly(o-hydroxyamide)s의 합성 및 열적 특성)

  • Lee, Eung-Jae;Yoon, Doo-Soo;Choi, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6029-6038
    • /
    • 2013
  • In this study we attempt to modify the backbone structure and improve processibility of PBO having high melting and glass transition temperature. A series of aromatic poly(o-hydroxyamide)s(PHAs) were synthesized by direct polycondensaton of diacides containing diimide unit with two types of bis(o-aminophenol)s including 3,3'-dihydroxybenzidine and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. PHAs were studied by FT-IR, $^1H$-NMR, DSC and TGA. PHAs exhibited inherent viscosities in the range of 0.34~0.65 dL/g at $35^{\circ}C$ in DMAc solution. The PHA 1 and 6F-PHA 6, introducing o-phenylene unit in the main chain showed excellent solubilities in aprotic solvents such as NMP etc. However, the PHA 3, having p-phenylene unit was not even dissolved perfectly with LiCl salt. 6F-PHAs were readily soluble at room temperature in aprotic solvents except 6F-PHA 3. But they showed better solubility than that of PHAs. The polybenzoxazoles(PBOs) were quite insoluble in other solvents except partially soluble in sulfuric acid. PBOs exhibited relatively high glass transition temperatures(Tg) in the range of 306~$311^{\circ}C$ by DSC. The maximum weight loss temperature and char yields of PHA3 and 6F-PHA3 showed the highest values of $658^{\circ}C$ and $653^{\circ}C$, 62.6 % and 62.1 %, respectively.

Optical Transmittance of Polybenzoxazole Precursor (폴리벤조옥사졸 전구체의 광투과도 연구)

  • 김대겸;김종화;최길영;오재민;이무영;박동원;이광섭;진문영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • Poly(ο-hydroxyamide)s as polybenzoxazoles precursors were synthesized by polycondensation from 2,2'-bis(3-amino-4-hydroxyphenyl) hexafluoropropane and various bis-acids. And the polymers were modified to acid-sensitive polyamides by introducing tetrahydropyran in order to impart photosensitivity. A study of optical transmittance at 365 nm, according to the chemical structure of bis-acid, revealed that the polymer derived from 4,4'-oxydibenzoic acid showed better optical transparency than those from other bis-acids. This tendency of optical transmittance could be explained by formation of charge transfer complex. In case of the polymer derived from 4,4'-oxydibenzoic acid, the electron accepting characteristic of bis-acid is reduced by introduction of electron donating group, -O-. Thus, optical transmittance increased due to the diminished formation of intramolecular charge transfer complex. In addition, the optical transmittance increased with increasing the THP content in the polymer. This is attributed to the reduced intermolecular interaction by the loosening of the packing density of the polymer chain.

Synthesis and Thermal Properties of Poly(benzoxazole)s Based on Pendants

  • Jang, Hyewon;Lee, Seulbi;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • A series of wholly aromatic poly(hydroxyamide)s(PHAs), containing varying amounts of 2,6-dimethylphenoxy group and quinoxaline ring in the main chain, were synthesized by a direct polycondensation method. The inherent viscosities of the PHAs in either DMAc or DMAc/LiCl solution at $35^{\circ}C$ were found to be in the range of 1.02~1.90 dL/g. In the solubility study, we observed that PHA 1, PHA 2, and PHA 3 were dissolved in aprotic solvents such as DMAc, NMP, DMF, and DMSO with LiCl on heating; however, PHA 4, PHA 5, and PHA 6 could be dissolved in aprotic solvents on heating without LiCl. For poly(benzoxazole)s(PBOs), the 10% and maximum weight loss temperatures were in the range of $582{\sim}622^{\circ}C$ and $630{\sim}659^{\circ}C$, respectively. Residues of PBOs at $900^{\circ}C$ were found to be relatively high, which were in the range of 65.3~70.8%.

Preparation and Properties of PAA/PHA/Organoclay Nanocomposite (PAA/PHA/Organoclay 나노복합재료의 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • Nanocomposite films were prepared by blending poly(amic acid)(PAA), poly(o-hydroxyamide)( PHA) and organically modified montmorillonite (OMMT) that has a layered structure. XRD, SEM and TEM were used to study the morphology of PAA/PHA nanocomposites, and DMA, TGA, UTM, LOI and PCFC techniques were used to characterize the mechanical and thermal properties, and flame retardancy of the nanocomposites. TEM images revealed that OMMT layers were well dispersed in the PAA/PHA matrix and showed exfoliation and intercalation behavior. The addition of 3 wt% OMMT to the PAA/PHA blend increased the initial modulus of PAA/ PHA blend to 3.68 GPa that was ca. 48% higher than that of the control PAA/PHA blend. Above 4 wt%, however, both the initial modulus and the tensile strength were found to decrease, which might be due to the aggregation of OMMT in PAA/PHA matrix. When the OMMT content was below 3 wt%, the thermal stability and flame retardancy of the PAA/PHA nanocomposites increased with increasing OMMT content.

Synthesis and Characterization of Fluorinated Polybenzoxazole Copolymers

  • Sohn, Jeong Sun;Park, A Ram;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.175-183
    • /
    • 2015
  • A series of fluorinated aromatic poly(hydroxyamide)s (PHAs) were synthesized by direct polycondensation of diacides containing 2,6-dimethylphenoxy group and quinoxaline ring in the main chain with 2,2-bis-(3-amino-4-hydroxyphenyl) hexafluoropropane. The PHAs had relatively low inherent viscosities in the range of 0.35~0.43 dL/g at $35^{\circ}C$ in DMAc solution. All PHAs exhibited excellent solubility in aprotic solvents such as NMP, DMAc, DMF and DMSO as well as in common organic solvents such as pyridine, THF, and m-cresol at room temperature. However, the poly(benzoxazole)s (PBOs) were quite insoluble in all organic solvents except partially soluble in concentrated sulfuric acid. The PBOs showed glass transition temperatures between 233 and $284^{\circ}C$ by DSC and maximum weight loss temperatures in the range of $536-546^{\circ}C$ by TGA.

Preparation and Flame Retardancy of Poly(benzoxazole imide) Having Trifluoromethyl Group in the Main Chain (주사슬에 Trifluoromethyl 그룹을 갖는 Poly(benzoxazole imide)의 제조 및 난연 특성)

  • Yeom, Jin-Seok;Choi, Jae-Kon;Lee, Chang-Hoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.355-363
    • /
    • 2012
  • A series of poly(hydroxyamide)s (PHAs) having trifluoromethyl group were prepared by direct polycondensation of aromatic diimide-dicarboxylic acids with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane by thionyl chloride and triethyl amine in N-methyl-2-pyrrolidinone (NMP). The PHAs exhibited inherent viscosity in the range of 0.54-0.96 dL/g at $35^{\circ}C$ in DMAc solution. All PHAs were readily soluble in a variety of organic solvents, whereas the polybenzoxazoles (PBOs) were quite insoluble except partially soluble in sulfuric acid. PHAs were converted to PBOs by thermal cycling reaction with heat of endotherm. The maximum weight loss temperature of the PHAs occurred in the range of $559-567^{\circ}C$. The PBOs showed relatively high char yields in the range of 47-59%. Pyrolysis Combustion Flow Calorimeter (PCFC) results of the PBOs showed 12-19 W/g heat release rate (HRR), and 2.7-3.6 kJ/g total heat release (total HR). The HRR of PBO 1 showed the lowest value of 12 W/g, which was 37% lower than that of PBO 3 (19 W/g).

Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain (주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.478-485
    • /
    • 2006
  • Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.

Synthesis and Thermal Properties of Wholly Aromatic Poly(benzoxazole)s

  • Han, So Hee;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.141-149
    • /
    • 2018
  • A series of aromatic poly(o-hydroxyamide)s (PHAs) were synthesized by the direct polycondensation reaction of 4,4′-(2,3-quinoxalinedioxy) dibenzoic acid and/or 4,4′-(2,3-pyridinedioxy) dibenzoic acid with bis(o-aminophenol) including 2,2-bis-(amino-4-hydroxyphenyl)hexafluoropropane. The PHAs exhibited inherent viscosities in the range of 0.17-0.35 dL/g at $35^{\circ}C$ in a DMAc solution. These polymers showed low inherent viscosities and yielded brittle films. All the PHAs showed excellent solubility in aprotic solvents such as DMAc, DMSO, NMP, and DMF at room temperature and in less polar solvents such as pyridine and THF. However, all the PBOs were only partially soluble in $H_2SO_4$. The PBOs exhibited 10% weight loss at temperatures in the range of $537-551^{\circ}C$. The maximum weight loss temperature increased with an increase in the content of the quinoxaline-containing monomer. The residue of the PBOs showed a weight loss of 45.8-56.7% at $900^{\circ}C$ in a nitrogen atmosphere.

Preparation and Properties of Polybenzoxazole Copolymers Bearing Pendants and Imide Ring in the Main Chain

  • Lee, Seul Bi;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.195-205
    • /
    • 2016
  • A series of aromatic poly(hydroxyamide)s (PHAs) containing varying oligo(oxyethylene) substituents and 1,3-phenylene imide ring unit in the main chain were synthesized by the direct polycondensation reaction. The inherent viscosities of the PHAs exhibited in the range of 0.89~1.12 dL/g in DMAc or DMAc/LiCl solution. The PH-2~5 copolymers were easily soluble in strong aprotic solvents: DMAc, NMP, DMSO etc. and the PH-5 copolymer was soluble in less polar solvents such as m-creasol and pyridine with LiCl salt on heating. However, all PBOs were quite insoluble in other solvents, but only partially soluble in sulfuric acid. All copolymers (PH-2~5) could afford the flexible and tough films by solution casting. We identified that the PHAs were converted to the PBOs by the thermal cyclization reaction in the range of $200{\sim}380^{\circ}C$. The 10% weight loss temperatures and char yields of the PBOs were recorded in the range of $382{\sim}647^{\circ}C$ and 38.7~73.1% values at $900^{\circ}C$. The tensile strength and initial modulus of the PH-5 in the copolmers showed the highest values of 2.46 GPa and 49.55 MPa, respectively. The LOI values of the PHAs were in the range 26.6~29.0%, and increased with increasing 1,3-phenylene imide ring unit.