• Title/Summary/Keyword: 3-Glucanase Activity

Search Result 94, Processing Time 0.019 seconds

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis

  • Kim, Do Young;Shin, Dong-Ha;Jung, Sora;Kim, Hyangmi;Lee, Jong Suk;Cho, Han-Young;Bae, Kyung Sook;Sung, Chang-Keun;Rhee, Young Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.943-953
    • /
    • 2014
  • The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.

Effects of Malt Modification on ${\beta}$-Glucan Solubility and Beer Viscosity (보리의 발아정도가 맥아의 ${\beta}$-glucan 용해성 및 맥주의 점도에 미치는 영향)

  • Lee, Young-Tack
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.360-363
    • /
    • 2008
  • Two barley malt samples were selected at two different stages of germination, a well-modified malt germinated for 96 hr and a poorly-modified malt for 60 hr, and were analyzed for total, insoluble, and soluble ${\beta}$-glucan contents. The total ${\beta}$-glucan content in raw barley was 3.96%, and the content was reduced during malting. The total ${\beta}$-glucan contents of the poorly- and well-modified malts were 1.02% and 0.18%, respectively. After 4 days of germination, approximately 95% of the ${\beta}$-glucan present in the barley was degraded. A significantly higher proportion of water-soluble ${\beta}$-glucan was found in the well-modified malt, suggesting that ${\beta}$-glucan solubility was dependent on cell wall modifications in the malt (${\beta}$-glucan breakdown). The proportion of water-soluble ${\beta}$-glucan was also affected by the extraction temperature. The two differently modified malts were mashed isothermally at 45, 55, 65, and 75oC for 2 hr. An increasing mashing temperature resulted in increased viscosity for the wort and the resulting beer. The viscosity of the wort from the well-modified malt was significantly low, due to its low initial malt ${\beta}$-glucan with increased solubility as well as a presumably sufficient ${\beta}$-glucanase activity during mashing.

Molecular Cloning and Sequence Analysis of Coelomic Cytolytic Factor-like Gene from the Midgut of the Earthworm, Eisenia Andrei (줄지렁이 중장에서 분리한 Coelomic cytolytic factor-유사 유전자의 클로닝 및 염기서열 분석에 관한 연구)

  • Baek, Nam Sook;Lee, Myung-Sik;Park, Sang-Kil;Kim, Dae-hwan;Tak, Eun-Sik;Ahn, Chi-Hyun;Sun, Zhenjun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.64-73
    • /
    • 2008
  • The cDNA of CCF (coelomic cytolytic factor)-like gene (EC 3.2.1.16), a kind of glycosyl hydorlase, was isolated and cloned from the midgut of the earthworm Eisenia anderi. The size of nucleotide sequence appeared to be 1,152 bp and its predicted coding region was composed of 384 amino acid residues including the initiation methionine. The 17 residues at N-terminal end in the deduced amino acid sequence were regarded to be a signal peptide. Based on the amino acid sequence analysis, it appeared that this CCF-like protein could belong to glycosyl hydrolase family 16 (GHF16) and showed a high sequence homology of about 79~99% with CCF and CCF-like proteins from other earthworm species. The CCFs and CCF-like proteins from various earthworm species exhibited a 100% homology in the polysacchride-binding motif and glucanase motif. It has been reported that the CCFs isolated from E. fedita appeared to show a broader pattern recognition specificity than those from other earthworm species because this species resides in decaying organic matter showing very high microbial activity, implying that CCF-like protein isolated in this study from E. andrei might exhibit a broad substrate specificity that is a useful characteristic for industrial application. A phylogenetic analysis using the deduced amino acid sequences of CCF-related proteins through the BLASTX revealed that GHF16 families could be divided into three groups of metazoa, viriplantae and eubacteria subfamily. Subsequently the CCF-related proteins of metazoa subfamily could clearly be subgroup into lophotrochozoan and edysozoan type including a deuterostome origin. Further understanding of the biological properties of E. andrei CCF-like protein should be addressed to regulate the ${\beta}$-D-glucan hydrolysis and production for the industrial uses.

  • PDF

Selection and Mechanisms of Indigenous Antagonistic Microorganisms against Sheath Rot and Dry Rot Disease of Garlic (마늘 잎집썩음병과 마른썩음병을 길항하는 토착길항미생물의 선발 및 기작)

  • Jeong, Hee-Young;Lim, Jong-Hui;Kim, Byung-Keuk;Lee, Jung-Jong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.295-301
    • /
    • 2010
  • Sheath rot and dry rot disease caused by Pseudomonas marginalis and Fusarium oxysporum were serious problems in garlic farmland. In this study, total of 160 indigenous antagonistic bacteria were isolated from 16 farmlands in Yeongcheon, Korea. Among these, 15 strains were able to inhibited P. marginalis and F. oxysporum. The 16s rDNA genes of the selected 15 strains were amplified and sequenced. The strains has strong antagonistic ability against garlic pathogens was achieved Bacillus subtilis YC82, B. vallismortis YC84, B. amyloliquefaciens YC240. The selected 3 strains tested for investigation of antifungal mechanisms further analyses; 3 strains of these validated for production of siderophore, ${\beta}$-glucanase and chitinase using CAS (chrome azurol S) blue agar, CMC-congo red agar and DNS method. The 3 strains were able to utilized insoluble phosphate as dertermined by vanado-molybdate method. The 3 strains verified for production of auxin and gibberellic acid using Salkowski test and holdbrook test. Also, 3 strains showed stimulation germination, stem growth promoting activity on the in vivo test. The 3 strains were able to effectively suppress P. marginalis and F. oxysporum causing sheath rot and dry rot diseases on the in vivo pot test.