• Title/Summary/Keyword: 3-Dimensional analysis

Search Result 6,728, Processing Time 0.037 seconds

Analysis on the Velocity Characteristics of the Basilliar Membrane Motion in Cochlea (코클리어 기저막 운동의 속도특성 해석)

  • 최갑홍;강세호
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 1984
  • In this study, the general characteristics, and theories of cochlear concerning with hearing are examined. Also the digital method is studied in order to analyze with microcomputer on the model equation of basiliar membrane in the cochlear derived from 3-dimensional rectangular block model which is studied by Boer. The method is illustrated for the amplitude characteristics of basiliar momtrane wave velocity. The results obtained are as follows; 1. In the magnitude characteristics, the velocity gradually increases from the stapes, shows the maximum magnitude, and then rapidly decreases to the Helicotrema. 2. The characteristics of 3-dimensional model is located between 1-and 2- dimensional models in the velocity characteristics coefficients, magnitude characteristics, and the pattern of 2-dimensional model shoves the different features from the 1-dimensional and 3-dimensional rectangular block model. 3. In the 3-dimensional rectangular block model, the characteristics of the waveform and the maximum resonant point are same whether Z(X) is linear or nonlinear.

  • PDF

A Study on the Development of a High Speed Feeding Type Three-Dimensional Bending Machine (초고속 이송 방식 3차원 Bending Machine 개발에 관한 연구)

  • Lim, Sang-Heon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.91-98
    • /
    • 2005
  • This study has been focused on the development of a high speed feeding type three-dimensional bending machine. It is designed for manufacture of copper pipe for heat exchangers. For the purpose of design of the machine, analysis of bending process, structural analysis and reliability evaluation of the machine by a laser interferometer are carried out. The analysis is carried out by FEM simulation using commercial softwares, DEFORM, MARC and CATIA V5. In addition, the machine has attained high accuracy and repeatability. In order to improve the accuracy of this machine, the maximum speed, positioning accuracy and repeatability of feed are measured by the laser interferometer. The final results of analysis are applied to the design of a high speed feeding type three-dimensional bending machine and the machine is successfully developed.

Heat Transfer Analysis in a Straight Fin of Trapezoidal Profile by the Heat Balance Integral Method (열평형적분법에 의한 사다리꼴단면의 직선휜에서의 열전달해석)

  • Jo Jong-Chull;Cho Jin-Ho
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 1982
  • When exact analytical solutions to certain type of heat conduction problems are quite cumbersome or not obtainable, it is important to introduce approximate analytical methods which are simple and useful compared with numerical methods. In this study, therefore, the Heat Balance Integral Method is applied to analysis of steady-state conduction in a straight fin of trapezoidal profile, and the two-dimensional temperature distribution in the fin and the approximate fin efficiency are obtained. Results are compared with those by the one- dimensional analysis and two-dimensional numerical analysis for a wide range of Biot numbers. It is shown that the two-dimensional temperature distribution obtained by the integral method is in good agreement with that by the finite element method at Biot numbers for which the result by the one-dimensional analysis is unreliable.

  • PDF

Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint ($Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가)

  • 박영철;오세욱;조용배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

A Performance analysis of robot tele-operator using 3D Images (입체영상(立體映像)을 이용한 원격Robot 조작자의 수행도 분석)

  • Jo, Am;Jeon, Yong-Ung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.127-140
    • /
    • 1999
  • In order to apply three-dimensional images to industries, the possibility of realizing three-dimensional images should be ensured and when operating a task using three-dimensional images, the intention of the observer and the result of operation should be precisely related. The aim of this paper is to investigate the task performance of a human operator during operating a robot manipulator using three-dimensional and two-dimensional image displays. From the result of this research, it was found that the accuracy of robot operation in the case of using three-dimensional displays is much higher than in the case of using two-dimensional displays and the adapting time to the operating task using three-dimensional displays is shorter than that using two-dimensional displays. From such results, we concluded that the application of three-dimensional displays, which can closely reflect real environment, to industries is desirable.

  • PDF

A study for the establishment of analysis tool for the visible area of three dimensional space - Based on the Raster operation using 3D game engine - (다시점 가시영역 분석도구설정에 관한 기초연구 - 3D게임엔진을 이용한 래스터 연산방식을 중심으로 -)

  • Kim, Suk-Tae;Jun, Han-Jong
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.5
    • /
    • pp.38-46
    • /
    • 2007
  • In the late 1970s, the method of quantitative and scientific space structural analysis based on graph theory was introduced to the process of space design, which arranges design and functional elements, as relying heavily on intuition could produce errors due to unverified experiences and prejudices of the designer. As the method of space analysis is complex and hard to express visually and requires repetitive operations, it was discussed theoretically only. However, with the development of computer performance and graphic in recent years, visualization became possible. But the method of visual structural analysis of space is at the level of two dimensions and it is not easy to get accurate data when it is applied to limited three dimensional space such as an interior space. For the visual structural analysis of space, this study presents 4 indices including visibility volume level, pure visibility connection frequency, effective visibility connection frequency, and path visibility connection frequency. This study also presents space division using three dimensional arrangement rather than the existing vector operation method and raytracing algorithm at the lattice constant. Based on this, an analysis tool for the visible regions of three dimensional space that is capable of evaluating at multiple points by using three dimensional game engine and presentation tool that allows the analyzer to interpret the data effectively is made. It is applied to 2 prototype models by displacing Z axis, and the results are compared with UCL Depthmap to verify the validity of data and evaluate its usefulness as a multidimensional, multi-view space analysis tool.

Analysis of Electromagnetic Characteristics of a 1MW Class HTS Synchronous Motor (1MW급 고온초전도 동기기의 전자기적 특성 해석)

  • Baik, S.K.;Kwon, Y.K.;Lee, E.Y.;Lee, J.D.;Kim, Y.C.;Moon, T.S.;Park, H.J.;Kwon, W.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.32-36
    • /
    • 2007
  • On the contrary of a conventional motor with very narrow air-gap. it is difficult to calculate the accurate magnetic field distribution and the performance of an air-cored superconducting motor by 2 dimensional analysis. which does not use high permeability material except outer machine shield. This paper aims to do analysis of magnetic field and force distribution from the 3 dimensional modelling of a 1MW class superconducting synchronous motor. Especially. the field coil composed of Bi-2223 high-temperature superconductor and the outer machine shield are modelled by finite element analysis software according to their structures and the self-inductance and Lorentz force are calculated based on the 3 dimensional magnetic field calculation. Moreover. the influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power.

Performance Analysis of Three-Dimensional Transonic Centrifugal Compressor Diffuser (3차원 천음속 원심압축기 디퓨져 성능연구)

  • Kim, Sang Dug;Song, Dong Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.217-222
    • /
    • 1998
  • CSCM upwind flux difference splitting compressible Navier-Stokes method has been used to predict the transonic flows in centrifugal compressor diffuser. The modified cyclic TDMA and the mass flux boundary conditions were used as boundary conditions of the diffuser analysis. With the mass flux boundary condition and the $130{\times}80{\times}40$ grid, the compressible upwind Navier-Stokes method predicted the transonic diffuser flowfield successfully. Plow changes in the impeller exit region due to the strong interaction between impeller exit and vaned diffuser, broad flow separation on the suction surface near hub and shroud was observed from the results of the mass flow rates 6.0 and 6.2kg/s at 27000 rpm. The static pressure increased and the total pressure decreased through the flow passage of the channel diffuser, which were predicted better from the three-dimensional analysis than from the two-dimensional analysis due to the strong effect of the three-dimensional flow. The mass averaged loss coefficients and pressure coefficients were also studied.

  • PDF

Analysis of Nonlinear Torsional Behavior for High Strength Reinforced Concrete Structure Using 3-Dimensional Lattice Model (3차원 래티스 모델을 사용한 고강도 철근콘크리트 구조물의 비선형 비틀림 해석)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Because of earthquakes that have recently struck, seismic design criteria that considered performance of structure were included in the design concepts. Thus, a simple analysis tool is needed to predict the strength and ductility of RC structures. In this study, three-dimensional lattice model was developed to expand the two-dimensional lattice model. Torsional analysis of the structure was done to evaluate the developed three-dimensional lattice model. Lattice model was evaluated by comparing analytical results with experimental results. Lattice element size was evaluated using the results of analysis. Torsional analysis results, using three-dimensional lattice model, show that the results are relatively consistent with the experimental values.