• Title/Summary/Keyword: 3-Dimensional Measurement

Search Result 1,256, Processing Time 0.033 seconds

Measurement System Development for Three-Dimensional Flow Velocity Components Using Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브를 이용한 3차원 유동속도 계측시스템 개발)

  • Kim, J.K.;Jeong, K.J.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • This paper shows the development process of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. The data reduction method using a bi-cubic curve-fitting program in a new calibration map was introduced in this study. This new calibration map can be applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, for the application angle of ${\pm}45^{\circ}$, an error for yaw and pitch angles appeared from $-1.76^{\circ}\;to\;1.83^{\circ}$ and from $-1.91^{\circ}\;to\;1.75^{\circ}$, respectively. Moreover, an error for a vector magnitude and a static pressure compared with a dynamic one showed from -7.83% to 4.87% and from -0.73 to 0.77, respectively. Even though this data reduction method showed unsatisfactory errors in a vector magnitude, it resulted in an easy and simple application method. Especially, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole. However, in order to obtain a better result, it is thought that a more sophisticated interpolation method needs to be introduced.

  • PDF

DC Sputtering Process of 2-Dimensional Tungsten Disulfide Thin Films on Soda-Lime Glass Substrates (DC 스퍼터링을 이용한 소다라임 유리 기판상에 2차원 황화텅스텐 박막 형성 공정)

  • Ma, Sang Min;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.31-35
    • /
    • 2018
  • Tungsten disulfide($WS_2$) thin films were directly deposited by direct-current(DC) sputtering and annealed by rapid thermal processing(RTP) to materialize two-dimensional p-type transition metal dichalcogenide (TMDC) thin films on soda-lime glass substrates without any complicated exfoliation/transfer process. $WS_2$ thin films deposited at various DC sputtering powers from 80 W to 160W were annealed at different temperatures from $400^{\circ}C$ to $550^{\circ}C$ considering the melting temperature of soda-lime glass. The optical microscope results showed the stable surface morphologies of the $WS_2$ thin films without any defects. The X-ray photoelectron spectroscopy (XPS) results and the Hall measurement results showed stable binding energies of W and S and high carrier mobilities of $WS_2$ thin films.

Photorealistic Ray-traced Visualization Process of an Aspherical Fresnel Mirror with Low Distortion

  • Hien Nguyen;Hieu Tran Doan Trung;Van Truong Vu;Hocheol Lee
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.493-501
    • /
    • 2024
  • This study proposes an effective visualization method for image distortion in high-resolution, machinable Fresnel mirrors, which offer significant advantages over traditional convex mirrors by being thinner and lighter. While commercial optical design programs are excellent at optimizing aberrations, they have some limitations in visualizing images from complex optical configurations. Therefore, NXTM CAD software is employed to achieve photorealistic ray-traced visualization with high-fidelity image rendering due to its flexible two-dimensional and three-dimensional modeling environments. In comparative simulations with various mirror profiles, we identified an aspherical Fresnel mirror with a conic constant of k = -3 that can reduce distortion to 1.79%, according to Zemax OpticStudio® calculations. Finally, the NXTM software successfully validated the distortion image of our machinable aspherical Fresnel mirror design. Subsequent practical experiments validated the consistency between the predicted distortion and the actual visualization results. We anticipate that this specialized visualization technique holds the potential to radically transform the interactive design of optical systems that incorporate aspherical Fresnel mirrors.

A Study on Stable Service of Marker based Augmented Reality Using 3D Location Measurement of Beacons (3차원 비콘 위치측정을 이용한 마커기반 증강현실의 안정적 서비스에 관한 연구)

  • Jung, Ji-Jung;Lee, Gwang;Kim, Bong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.883-890
    • /
    • 2017
  • Among the augmented reality services, the most frequently used services are marker based augmented reality services. However, there is a problem that the augmented reality service can not be provided in an environment in which the marker image can not be recognized. In this paper, we propose a method to provide more stable service by estimating the user's posture even if the marker image can not be correctly recognized due to occlusion, obstacle or marker damage in the marker based augmented reality. In the proposed method, when a failure occurs in the provision of a marker based augmented reality, the attitude of the user is estimated using the 3-dimensional coordinates measured through communication between the three beacons and the user, and it allows the user to receive the augmented reality service continuously. We describe the scenario of augmented reality technique using proposed marker recognition and beacon communication, and present the results of experiments based on the degree of occlusion and damage.

Real-time moving object tracking and distance measurement system using stereo camera (스테레오 카메라를 이용한 이동객체의 실시간 추적과 거리 측정 시스템)

  • Lee, Dong-Seok;Lee, Dong-Wook;Kim, Su-Dong;Kim, Tae-June;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.366-377
    • /
    • 2009
  • In this paper, we implement the real-time system which extracts 3-dimensional coordinates from right and left images captured by a stereo camera and provides users with reality through a virtual space operated by the 3-dimensional coordinates. In general, all pixels in correspondence region are compared for the disparity estimation. However, for a real time process, the central coordinates of the correspondence region are only used in the proposed algorithm. In the implemented system, 3D coordinates are obtained by using the depth information derived from the estimated disparity and we set user's hand as a region of interest(ROI). After user's hand is detected as the ROI, the system keeps tracking a hand's movement and generates a virtual space that is controled by the hand. Experimental results show that the implemented system could estimate the disparity in real -time and gave the mean-error less than 0.68cm within a range of distance, 1.5m. Also It had more than 90% accuracy in the hand recognition.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

Two-dimensional Velocity Measurements of Campbell Glacier in East Antarctica Using Coarse-to-fine SAR Offset Tracking Approach of KOMPSAT-5 Satellite Image (KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측)

  • Chae, Sung-Ho;Lee, Kwang-Jae;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2035-2046
    • /
    • 2021
  • Glacier movement speed is the most basic measurement for glacial dynamics research and is a very important indicator in predicting sea level rise due to climate change. In this study, the two-dimensional velocity measurements of Campbell Glacier located in Terra Nova Bay in East Antarctica were observed through the SAR offset tracking technique. For this purpose, domestic KOMPSAT-5 SAR satellite images taken on July 9, 2021 and August 6, 2021 were acquired. The Multi-kernel SAR offset tracking proposed through previous studies is a technique to obtain the optimal result that satisfies both resolution and precision. However, since offset tracking is repeatedly performed according to the size of the kernel, intensive computational power and time are required. Therefore, in this study, we strategically proposed a coarse-to-fine offset tracking approach. Through coarse-to-fine SAR offset tracking, it is possible to obtain a result with improved observation precision (especially, about 4 times in azimuth direction) while maintaining resolution compared to general offset tracking results. Using this proposed technique, a two-dimensional velocity measurements of Campbell Glacier were generated. As a result of analyzing the two-dimensional movement velocity image, it was observed that the grounding line of Campbell Glacier exists at approximately latitude -74.56N. The flow velocity of Campbell Glacier Tongue analyzed in this study (185-237 m/yr) increased compared to that of 1988-1989 (140-240 m/yr). And compared to the flow velocity (181-268 m/yr) in 2010-2012, the movement speed near the ground line was similar, but it was confirmed that the movement speed at the end of the Campbell Glacier Tongue decreased. However, there is a possibility that this is an error that occurs because the study result of this study is an annual rate of glacier movement that occurred for 28 days. For accurate comparison, it will be necessary to expand the data in time series and accurately calculate the annual rate. Through this study, the two-dimensional velocity measurements of the glacier were observed for the first time using the KOMPSAT-5 satellite image, a domestic X-band SAR satellite. It was confirmed that the coarse-to-fine SAR offset tracking approach of the KOMPSAT-5 SAR image is very useful for observing the two-dimensional velocity of glacier movements.

A Study on the Deduction of 3-Dimmensional Visual Structure and measurement of Quantitative Openness in Accordance with Spatial Probe Routes (공간탐색경로에 따른 3차원 시각구조 도출과 정량적 개방도 측정에 관한 연구)

  • Kim, Suk-Tae
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.112-120
    • /
    • 2010
  • Human can recognize the environment by detecting spatial perception, and most of environmental perception depends on visual perception. In view that the acquisition of spatial information is accomplished through visual recognition, analysis of visual structure contained in the space is thought to be very important sector in studying the characteristic of the space. The history of studies on visual structure of space, however, wasn't too long, and furthermore most of the theories up to now focused on static and planar principles. Under this circumstance, this study is intended to suggest new theory by combining Isovist theory and VGA theory that have been actively discussed as the theory on visual perception-based spatial structure and supplementing them between each other to expand into 3-dimensional model. The suggested theory is a complex principle in dimensional and dynamic form in consideration of visual direction, which forms 3-dimentional virtual model that enables visualization of the property of spatial structure as the routine discriminating whether visual connection is made between viewing point and target point, and the target point is included in the visual field quadrangular pyramid or not. Such model was built up by an analysis application where four probe paths were applied to simulate the visual structure that occurs in virtual space, and then the characteristics were analyzed through quantification. In result, in spite of the path with equal space and equal length, significant difference in the acquired quantity of spatial information could be found depending on the probe sequence. On the contrary, it was found that probe direction may not affect the acquired quantity of information and visual property of the space.

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF

Data Envelopment Analysis(DEA) using Length Rate-based Efficiency Measurement (길이 비율 효율성 측정법을 이용한 자료포락분석)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.143-149
    • /
    • 2021
  • This paper proposes length rate measurement for relative efficiency that is a core of data envelopment analysis(DEA). It has been said that the linear programming(LP) is a unique method to get the relative efficiency. This method has drawback that applies fractional LP focusing on each DMU in turn. This paper draws bi-dimensional input-output relational graph and distinguishes between efficient and inefficient DMU. The relative efficiency of inefficient DUM is solve using length rate measurement. As a result of various experimental data, the LP shows mistake of application, but this method gets the correct relative efficiency at all times. Also, this method only gets the relative efficiency for only inefficient DMUs without efficient DUMs that already achieved 100% efficiency. This method solves the relative efficiency of inefficient DUM draws the line to efficient frontier and decides the reference set easily.