• 제목/요약/키워드: 3-Dimensional Convolutional Network

검색결과 39건 처리시간 0.019초

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

3차원 합성곱 신경망 기반 향상된 스테레오 매칭 알고리즘 (Enhanced Stereo Matching Algorithm based on 3-Dimensional Convolutional Neural Network)

  • 왕지엔;노재규
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.179-186
    • /
    • 2021
  • For stereo matching based on deep learning, the design of network structure is crucial to the calculation of matching cost, and the time-consuming problem of convolutional neural network in image processing also needs to be solved urgently. In this paper, a method of stereo matching using sparse loss volume in parallax dimension is proposed. A sparse 3D loss volume is constructed by using a wide step length translation of the right view feature map, which reduces the video memory and computing resources required by the 3D convolution module by several times. In order to improve the accuracy of the algorithm, the nonlinear up-sampling of the matching loss in the parallax dimension is carried out by using the method of multi-category output, and the training model is combined with two kinds of loss functions. Compared with the benchmark algorithm, the proposed algorithm not only improves the accuracy but also shortens the running time by about 30%.

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

1D CNN과 기계 학습을 사용한 낙상 검출 (1D CNN and Machine Learning Methods for Fall Detection)

  • 김인경;김대희;노송;이재구
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.85-90
    • /
    • 2021
  • 본 논문에서는 고령자를 위한 개별 웨어러블(Wearable) 기기를 이용한 낙상 감지에 대해 논한다. 신뢰할 수 있는 낙상 감지를 위한 저비용 웨어러블 기기를 설계하기 위해서 대표적인 두 가지 모델을 종합적으로 분석하여 제시한다. 기계 학습 모델인 의사결정 나무(Decision Tree), 랜덤 포래스트(Random Forest), SVM(Support Vector Machine)과 심층 학습 모델인 일차원(One-Dimensional) 합성곱 신경망(Convolutional Neural Network)을 사용하여 낙상 감지 학습 능력을 정량화하였다. 또한 입력 데이터에 적용하기 위한 데이터 분할, 전처리, 특징 추출 방법 등을 고려하여 검토된 모델의 유효성을 평가한다. 실험 결과는 전반적인 성능 향상을 보여주며 심층학습 모델의 유효성을 검증한다.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

MLCNN-COV: A multilabel convolutional neural network-based framework to identify negative COVID medicine responses from the chemical three-dimensional conformer

  • Pranab Das;Dilwar Hussain Mazumder
    • ETRI Journal
    • /
    • 제46권2호
    • /
    • pp.290-306
    • /
    • 2024
  • To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transferlearning methodology and a multilabel convolutional neural network for COVID (MLCNN-COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer-learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three-dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN-COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer-learning model's performance. It shows that three-dimensional conformers adequately identify negative COVID medicine responses.

R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구 (Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique)

  • 김혜진;이정민;배경호;어양담
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.213-225
    • /
    • 2018
  • 3차원 공간정보 구축을 위해 건물 텍스처를 촬영하는 과정에서 폐색영역 문제가 발생한다. 이를 해결하기 위해선 폐색영역을 자동 인식하여 이를 검출하고 텍스처를 자동 보완하는 자동화 기법 연구가 필요하다. 현실적으로 매우 다양한 구조물 형상과 폐색을 발생시키는 경우가 있으므로 이를 극복하는 대안들이 고려되고 있다. 본 연구는 최근 대두되고 있는 딥러닝 기반의 알고리즘을 이용하여 폐색지역 패턴화하고, 학습기반 폐색영역 자동 검출하는 접근을 시도한다. 영상 내 객체 추출에서 우수한 성과를 발표하는 Convolutional Neural Network (CNN) 기법의 향상된 알고리즘인 Faster Region-based Convolutional Network (R-CNN)과 Mask R-CNN 2가지를 이용하여, 건물 벽면 촬영 시 폐색을 유발하는 사람, 현수막, 차량, 신호등에 대한 자동 탐지하는 성능을 알아보기 위해 실험하고, Mask R-CNN의 미리 학습된 모델에 현수막을 학습시켜 자동탐지하는 실험을 통해 적용이 높은 결과를 확인할 수 있었다.

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.

One-dimensional CNN Model of Network Traffic Classification based on Transfer Learning

  • Lingyun Yang;Yuning Dong;Zaijian Wang;Feifei Gao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.420-437
    • /
    • 2024
  • There are some problems in network traffic classification (NTC), such as complicated statistical features and insufficient training samples, which may cause poor classification effect. A NTC architecture based on one-dimensional Convolutional Neural Network (CNN) and transfer learning is proposed to tackle these problems and improve the fine-grained classification performance. The key points of the proposed architecture include: (1) Model classification--by extracting normalized rate feature set from original data, plus existing statistical features to optimize the CNN NTC model. (2) To apply transfer learning in the classification to improve NTC performance. We collect two typical network flows data from Youku and YouTube, and verify the proposed method through extensive experiments. The results show that compared with existing methods, our method could improve the classification accuracy by around 3-5%for Youku, and by about 7 to 27% for YouTube.

균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스 (Customized AI Exercise Recommendation Service for the Balanced Physical Activity)

  • 김창민;이우범
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.234-240
    • /
    • 2022
  • 본 논문은 직종별 근무 환경에 따른 상대적 운동량을 고려한 맞춤형 AI 운동 추천 서비스 방법을 제안한다. 가속도 및 자이로 센서를 활용하여 수집된 데이터를 18가지 일상생활의 신체활동으로 분류한 WISDM 데이터베이스를 기반으로 전신, 하체, 상체의 3가지 활동으로 분류한 후 인식된 활동 지표를 통해 적절한 운동을 추천한다. 본 논문에서 신체활동 분류를 위해서 사용하는 1차원 합성곱 신경망(1D CNN; 1 Dimensional Convolutional Neural Network) 모델은 커널 크기가 다른 다수의 1D 컨볼루션(Convolution) 계층을 병렬적으로 연결한 컨볼루션 블록을 사용한다. 컨볼루션 블록은 하나의 입력 데이터에 다층 1D 컨볼루션을 적용함으로써 심층 신경망 모델로 추출할 수 있는 입력 패턴의 세부 지역 특징을 보다 얇은 계층으로도 효과적으로 추출 할 수 있다. 제안한 신경망 모델의 성능 평가를 위해서 기존 순환 신경망(RNN; Recurrent Neural Network) 모델과 비교 실험한 결과 98.4%의 현저한 정확도를 보였다.