• 제목/요약/키워드: 3-Dimension algorithm

검색결과 192건 처리시간 0.028초

765 kV 초고압 송전선 주변의 인체 유도전류 계산 (Calculation of Induced Current in the Human Body around 765 kV Transmission Lines)

  • 명성호;이재복;허창수
    • 한국전자파학회논문지
    • /
    • 제9권6호
    • /
    • pp.802-812
    • /
    • 1998
  • 고전압 발/ 변전소의 근무자나 송전선 작업자 및 주변거주자가 전계 노출에 안전해야 함은 중요한 일이다. 본 논문에서는 복잡하고 계산시간이 많이 소요되는 인체의 3차원 유도전류를 계산하기 위해 전압원(송전선 로)의 효과적인 모델링 기법을 사용하여 전압원과 피유도체를 분리하지 않고 직접 3차원 정전용량을 구함으 로써 불평등 전계하의 임의의 3차원 공간상에서도 인체에 미치는 유도전류 해석이 가능한 장접을 갖도록 하 였다. 사례연구로 본 연구에서 제안한 알고리즘을 765 kV급 초고압 송전선로에 적용하여 인체 유도 안전 성을 평가한 결과 765 kV 송전선에서 인체의 단락전류는 인체의 위치에 따라 0.3 mA에서 6.8 mA로 분포 되었다. 특히, 송전선로에서 활선 작업시 단락전류 $I_{sc}$의 크기는 ANSI 허용기준인 5 mA를 념을 수 있어 활 선 작업시 작업자의 전계의 방호 대책을 위해서는 도전물질로 구성된 보호복이 필요함을 알 수 있었다.

  • PDF

펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식 (3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm)

  • 이영학
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1501-1514
    • /
    • 2008
  • 깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.

  • PDF

차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류 (Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video)

  • 신욱선;이창훈
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.

계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘 (A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification)

  • 김순금;고대영;박준규;박아론;백성준
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.562-569
    • /
    • 2019
  • 최근에 원 거리에서 폭발 물질의 감지를 위해 라만 분광 기기의 관심이 점차 증가하고 있다. 더불어 측정된 화학물질에 대한 라만 스펙트럼을 대용량 데이터베이스의 알려진 라만 스펙트라와 비교하여 식별할 수 있는 고속 검색 방법에 대한 요구도 커지고 있다. 지금까지 가장 간단하고 널리 사용되는 방법은 주어진 스펙트럼과 데이터베이스 스펙트라 사이의 유클리드 거리를 계산하고 비교하는 방법이다. 하지만 고차원 데이터의 속성으로 검색의 문제는 그리 간단하지 않다. 가장 큰 문제점중의 하나는 검색 방법에 있어서 연산량이 많아 계산 시간이 너무 오래 걸린다는 것이다. 이러한 문제점을 극복하기 위해, 우리는 정렬된 분산에 따른 MPS Sort+PDS 방법을 제안하였다. 이 방법은 벡터의 두 개의 주요한 특징으로 평균과 분산을 사용하여 후보가 될 수 없는 많은 코드워드를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 본 논문에서 우리는 기존의 방법보다 더욱 더 향상된 2가지 새로운 방법의 고속 검색 알고리즘을 제안한다. PCA+PDS 방법은 전체 데이터를 사용하는 거리 계산과 똑같은 결과를 가지면서 PCA 변환을 통해 데이터의 차수를 감소시켜 계산량을 줄여준다. Hierarchical Cluster Tree 알고리즘은 PCA 변환된 스펙트라 데이터를 사용하여 이진 계층 클러스터 트리를 만든다. 그런 후 입력 스펙트럼과 가장 가까운 클러스터부터 검색을 시작하여 후보가 될 수 없는 많은 스펙트라를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 실험은 정렬된 분산에 따른 MPS Sort+PDS와 비교하여 PCA+PDS는 60.06%의 성능 향상을 보였다. Hierarchical Cluster Tree는 PCA+PDS와 비교하여 17.74%의 성능향상을 보였다. 실험결과는 제안된 알고리즘이 고속 검색에 적합함을 확인시켜 준다.

A New 3D Active Camera System for Robust Face Recognition by Correcting Pose Variation

  • Kim, Young-Ouk;Jang, Sung-Ho;Park, Chang-Woo;Sung, Ha-Gyeong;Kwon, Oh-Yun;Paik, Joon-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1485-1490
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user, does face recognition and vital for many surveillance based systems. Advantage of face recognition when compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to decrease in dimension from of image acquisition step and various changes associated with face pose and background. Factors that deteriorate performance of face recognition are many such as distance from camera to face, lighting change, pose change, and change of facial expression. In this paper, we implement a new 3D active camera system to prevent various pose variation that influence face recognition performance and propose face recognition algorithm for intelligent surveillance system and mobile robot system.

  • PDF

자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정 (Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel)

  • 조성빈;박창현;표병기;최동훈
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

Study on Improving Oriental Medicine Statistical System for Multidimensional Statistical Data

  • Yea, Sang-Jun;Kim, Chul;Kim, Jin-Hyun;Jang, Hyun-Chul;Kim, Sang-Kyun;Song, Mi-Young
    • International Journal of Contents
    • /
    • 제7권3호
    • /
    • pp.13-18
    • /
    • 2011
  • Oriental medicine statistics are essential in research planning, research evaluation, and policy decision based on objective data. However, integrated administration of such statistics is not presently possible in the oriental medicine field, which has been slow in incorporating information communication technology. In an effort to address this problem, the Korea Institute of Oriental Medicine (KIOM) developed an oriental medicine statistical system in 2009, and the system has been offered in the traditional medicine information portal of OASIS. However, according to a 2010 survey targeting OASIS users, those surveys reported that needs for a system where various statistical data can be extracted via an interactive approach to multidimensional data. As a result of an analysis of the functions of the existing system, it was found that it is necessary to array and arithmetically analyze Stats Value, Drill Up & Drill Down, and Pivot. To this end, the existing DB schema should be redesigned. Based on our analysis result, we redesigned the database into a structure that is applicable to the reverse pivot algorithm. We used J2EE/JSP and a Flex framework to design and develop an oriental medicine statistical system that can provide multidimensional statistical data. Considering that the improved oriental medicine statistical system is planned to be offered by OASIS of KIOM, utilization and value of oriental medicine statistical data are expected to be enhanced.

Effects of Total Sleep Deprivation on the First Positive Lyapunov Exponent of the Waking EEG

  • Kim, Dai-Jin;Jeong, Jae-Seung;Chae, Jeong-Ho;Kim, Soo-Yong;Go, Hyo-Jin;Paik, In-Ho
    • 감성과학
    • /
    • 제1권1호
    • /
    • pp.69-78
    • /
    • 1998
  • Sleep deprivation may affect the brain functions such as cognition and consequently, dynamics of the BEG. We examined the effects of sleep deprivation on chaoticity of the EEG. Five volunteers were sleep-deprived over a period of 24 hours They were checked by EEG during two days. thc first day of baseline period and the second day of total sleep deprivation period. EEGs were recorded from 16 channels for nonlinear analysis. We employed a method of minimum embedding dimension to calculate the first positive Lyapunov exponent. Fer limited noisy data, this algorithm was strikingly faster and more accurate than previous ones. Our results show that the sleep deprived volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fp1, F4. F8. T4, T5. C3, C4. P3. P4. O1) compared with the values of baseline periods. These results suggested that sleep deprivation leads to decrease of chaotic activity in brain and impairment of the information processing in the brain. We suggested that nonlinear analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for understanding the role if sleep and the effects of sleep deprivation on the brain function.

  • PDF

Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Zandi, Yousef;Dehghani, Davoud;Bahadori, Alireza;Shariati, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.319-332
    • /
    • 2019
  • This study is aimed to predict the behaviour of channel shear connectors in composite floor systems at different temperatures. For this purpose, a soft computing approach is adopted. Two novel intelligence methods, including an Extreme Learning Machine (ELM) and a Genetic Programming (GP), are developed. In order to generate the required data for the intelligence methods, several push-out tests were conducted on various channel connectors at different temperatures. The dimension of the channel connectors, temperature, and slip are considered as the inputs of the models, and the strength of the connector is predicted as the output. Next, the performance of the ELM and GP is evaluated by developing an Artificial Neural Network (ANN). Finally, the performance of the ELM, GP, and ANN is compared with each other. Results show that ELM is capable of achieving superior performance indices in comparison with GP and ANN in the case of load prediction. Also, it is found that ELM is not only a very fast algorithm but also a more reliable model.

초분광 이미지 픽셀 분류를 위한 풀링 연산과 PSNR을 이용한 최적 밴드 선택 기법 (Optimal Band Selection Techniques for Hyperspectral Image Pixel Classification using Pooling Operations & PSNR)

  • 장두혁;정병현;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.141-147
    • /
    • 2021
  • 본 연구를 통해 임베디드 시스템(Embedded System)에서 뉴럴 네트워크(Neural Network) 인풋의 차원 감소 방식으로 복잡한 연산량을 줄여 초분광 대용량 데이터 특징 정보의 활용률을 개선하기 위해, 전체 밴드를 밴드별 최댓값과 최솟값 차이로 부분집합으로 군집화하여, 각 부분집합에서 밴드 선택 알고리즘을 적용한다. 특징 추출과 특징 선택 기법 중에, 특징 선택 기법을 통해, 파장 범위와 관계없이 데이터세트에 맞는 최적의 밴드 수와 기존 알고리즘 적용 소요 시간과 성능을 향상하고자 한다. 이 실험을 통해 기존 밴드 선택 기법보다 1/3~ 1/9배 소요 시간을 단축했음에도 불구하고 K-최근접 이웃 분류기를 통한 성능 면에서는 약 4% 이상 향상된 의미 있는 결과를 도출하였다. 실시간 초분광 데이터 분석 활용에는 어렵지만, 개선된 가능성을 확인했다.