• Title/Summary/Keyword: 3-Deazaadenosine

Search Result 4, Processing Time 0.017 seconds

Cytochrome C Release and Caspase Activation Induced by 3-Deazaadenosisne is Inhibited by Bcl-2

  • Lee Yong-Joon;Choi Mi-Hyun;Lee Jung-Hee;Kim Ho-Shik;Lee Jeong-Hwa
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • Deazaadenosine analogs such as 3-deazaadenosine (DZA), 3-deazaaristeromycin (DZAri) and ara-3-deazaadenine (DZAra-A) were developed as inhibitors of S-adenosylhomocysteine (Ado-Hcy) hydrolase (EC 3.3.1.1). These analogs were reported to induce apoptosis in human and murine leukemic cells. But, the mechanism involved in this apoptosis was not clarified yet. In the present study, we analyze the apoptosis induced by deazaadenosine analogs in human cervival cancer cell line, HeLa and the effect of Bcl-2 on this apoptosis. Whereas neither DZAri nor DZAra-A showed inhibitory effect on HeLa cell growth, DZA induced apoptosis in HeLa cells accompanied by cytochrome c release and activation of various caspases such as caspase-2,-8,-9 and -3. In HeLa-bcl-2 cell line, a stable transfectant of HeLa cell to overexpress Bcl-2, cytochrome c release, activation of all these caspases and the resulted apoptosis by DZA were completely prevented. By in vitro assay of cytochrome c release, in addition, DZA induced cytochrome c release from purified mitochondria of HeLa-pcDNA3 cells, but not HeLa-bcl-2 cells, even in the absence of cytosolic fraction. Therefore, it can be suggested that DZA might damage directly mitochondria leading to activate intrinsic pathway of caspase and thus induce apoptosis. DZA-induced apoptosis in HeLa cells may be in a bcl-2-inhibitable manner and irrelative of Ado-Hcy hydrolase.

  • PDF

Induction of the Intrinsic Apoptotic Pathway by 3-Deazaadenosine Is Mediated by BAX Activation in HL-60 Cells

  • Lee, Sun-Young;Ko, Kyoung-Won;Kang, Won-Kyung;Choe, Yun-Jeong;Kim, Yoon-Hyoung;Kim, In-Kyung;Kim, Jin;Kim, Ho-Shik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2010
  • 3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}_m$). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.

Effects of Cyclosporin A, FK506, and 3-Deazaadenosine on Acute Graft-versus-host Disease and Survival in Allogeneic Murine Hematopoietic Stem Cell Transplantation (마우스 동종 조혈모세포 이식모델에서 Cyclosporin A, FK506, 3-Deazaadenosine 등의 약제가 급성 이식편대 숙주병과 생존에 미치는 영향)

  • Jin, Jong Youl;Jeong, Dae Chul;Eom, Hyeon Seok;Chung, Nak Gyun;Park, Soo Jeong;Choi, Byung Ock;Min, Woo Sung;Kim, Hack Ki;Kim, Chun Choo;Han, Chi Wha
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.150-155
    • /
    • 2003
  • Background: We investigated the effect of donor marrow T cell depletion, administration of FK506, cyclosporin A (CSA), and 3-deazaadenosine (DZA) on graft versus host disease (GVHD) after allogeneic murine hematopoietic stem cell transplantation (HSCT). Methods: We used 4 to 6 week old Balb/c ($H-2^d$, recipient), and C3H/He ($H-2^k$, donor) mice. Total body irradiated recipients received $1{\times}10^7$ bone marrow cells (BM) and $0.5{\times}10^7$ splenocytes of donor under FK506 (36 mg/kg/day), CSA (5 mg/kg/day, 20 mg/kg/day), and DZA (45 mg/kg/day), which were injected intraperitoneally from day 1 to day 14 daily and then three times a week for another 2 weeks. To prevent the GVHD, irradiated Balb/c mice were transplanted with $1{\times}10^7$ rotor-off (R/O) cells of donor BM. The severity of GVHD was assessed daily by clinical scoring method. Results: All experimental groups were well grafted after HSCT. Mice in experimental group showed higher GVHD score and more rapid progression of GVHD than the mice with R/O cells (R/O group) (p<0.01). There were relatively low GVHD scores and slow progressions in FK506 and low dose CSAgroups than high dose CSA group (p<0.01). The survival was better in FK506 group than low dose CSA group. All mice treated with CSA died within 12 days after HSCT. The GVHD score in DZA group was low and slow in comparison with control group (p<0.05), but severity and progression were similar with low dose CSA group (p=0.11). All mice without immunosuppressive treatment died within 8 days, but all survived in R/O group (p<0.01). Survival in low dose CSA group was longer than in control group (p<0.05), but in high dose CSA group, survival was similar to control group. The survival benefit in DZA group was similar with low dose CSA group. FK506 group has the best survival benefit than other groups (p<0.01), comparable with R/O group (p=0.18), although probability of survival was 60%. Conclusion: We developed lethal GVHD model after allogeneic murine HSCT. In this model, immunosuppressive agents showed survival benefits in prevention of GVHD. DZA showed similar survival benefits to low dose CSA. We propose that DZA can be used as a new immunosuppressive agent to prevent GVHD after allogeneic HSCT.

Synthesis and Potent Anti-leukemic Activity of Novel 5'-Norcarbocyclic C-nucleoside Phosphonic Acids

  • Kim, Seyeon;Kim, Eunae;Oh, Chang-Hyun;Yoo, Kyung Ho;Hong, Joon Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3502-3508
    • /
    • 2014
  • The first synthetic route to 5'-norcarbocyclic C-nucleoside [7-oxa-7,9-dideazadenosine (furo[3,2-d]pyrimidine) and 9-deazaadenosine (pyrrolo[3,2-d]pyrimidine)] phosphonic acids from commercially available 1,3-dihydroxy cyclopentane was described. The key C-C bond formation from sugar to base precursor was performed using Knoevenagel-type condensation from a ketone derivative. Synthesized C-nucleoside phosphonic acids were tested for anti-HIV activity as well as anti-leukemic activity. Compound 26 showed significant anti-leukemic activity.