Synthesis and Potent Anti-leukemic Activity of Novel 5'-Norcarbocyclic C-nucleoside Phosphonic Acids

Seyeon Kim, Eunae Kim, Chang-Hyun Oh, ${ }^{\dagger}$ Kyung Ho Yoo, ${ }^{\ddagger}$ and Joon Hee Hong*
BK21-Project Team, College of Pharmacy, Chosun University, Kwangju 501-759, Korea. ${ }^{*}$ E-mail: hongjh@chosun.ac.kr
${ }^{\dagger}$ Center for Biomaterials, Korea Institute of Science and Technology, Seoul 130-650, Korea
${ }^{\text {* Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 130-650, Korea }}$ Received July 28, 2014, Accepted August 14, 2014

Abstract

The first synthetic route to 5 '-norcarbocyclic C-nucleoside [7-oxa-7,9-dideazadenosine (furo[3,2- d]pyrimidine) and 9-deazaadenosine (pyrrolo[3,2-d]pyrimidine)] phosphonic acids from commercially available 1,3dihydroxy cyclopentane was described. The key C-C bond formation from sugar to base precursor was performed using Knoevenagel-type condensation from a ketone derivative. Synthesized C-nucleoside phosphonic acids were tested for anti-HIV activity as well as anti-leukemic activity. Compound $\mathbf{2 6}$ showed significant anti-leukemic activity.

Key Words : Antiviral agent, Anti-leukemic agent, C-nucleoside, Knoevenagel reaction

Introduction

C-Nucleosides ${ }^{1}$ such as pseudoisocytidine, ${ }^{2}$ tiazofurin, ${ }^{3}$ selenazofurin, ${ }^{4} 9$-deazaadenosine (1), ${ }^{5}$ and 4 -amino- 8 - β-D-ribofuranosylpyrazolo[1,5-a]-1,3,5-triazine (2, D-APTR) ${ }^{6}$ have received considerable attention because of their chemical stability and anti-leukemic activity. The carbocyclic C nucleoside ${ }^{7}$ is a unique class of nucleosides in which the heterocycle is connected to a sugar moiety by a $\mathrm{C}-\mathrm{C}$ bond instead of the $\mathrm{C}-\mathrm{N}$ bond of the natural nucleosides. Recently, Schneller et al. reported a novel synthetic route of carbocyclic 4'-epi-formycin (3) via a procedure based on an asymmetric aldol/ring-closing metathesis strategy. ${ }^{8}$

Carbocyclic nucleosides ${ }^{9}$ are a group of compounds that are structurally similar to natural nucleosides in which the furanose oxygen is replaced by a methylene group. Replacement of the furanose ring oxygen by carbon is of particular interest because the resulting carbocyclic nucleosides possess greater metabolic stability to phosphorylase, ${ }^{10}$ which cleaves the glycosidic bond of nucleosides. The recent discovery of cpAP (4) $)^{11}$ as an anti-HIV agent gives strong impetus to the search for novel nucleosides in this class of compounds (Figure 1).
A nucleoside 5 '-phosphate is essentially a nucleoside monophosphate analogue. ${ }^{12}$ However, the phosphonate has certain advantages over its phosphate counterpart because it is metabolically stable owing to its phosphorus-carbon bond, which is not susceptible to hydrolytic cleavage. ${ }^{13}$ The spatial location of the oxygen atom, particularly the β-position, with regard to the phosphorus atom in the nucleoside analogue plays a critical role in its antiviral activity. Increased antiviral activity conferred by this oxygen atom may be attributed to increased binding capacity of the phosphonate analogs to target enzymes. ${ }^{14}$ More importantly, the presence of a 5^{\prime} phosphonate allows the first phosphorylation step required

3

Figure 1. Design rationale of 5'-norcarbocyclic C-nucleoside phosphonic acid analogs
for nucleoside activation to be skipped, thereby bypassing this inefficient and often rate-limiting step in the conversion to 5 '-triphosphate. This is frequently a limiting step in the phosphorylation sequence that ultimately leads to triphosphates. ${ }^{15}$ Like a nucleoside monophosphate, a nucleoside phosphonate can be further phosphorylated by cellular nucleotide kinases. ${ }^{16}$ The concept of nucleoside phosphonate has been applied to design chain terminators for anti-HIV chemotherapy and proved to be valid.

On the basis of the advantageous chemical stability and clinically significant biological properties of C-nucleosides and carbocyclic nucleoside phosphonic acids, we aimed to synthesize hybrid nucleosides in the form of 5 '-norcarbocyclic C-nucleoside phosphonic acids. Herein, we report the synthesis of novel 5'-norcarbocyclic furo and pyrrolo[3,2d]pyrimidine nucleoside phosphonic acids and their biological evaluation.

Reagents: i) TBDMSCI, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) $\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, KOt - Bu , EtOH ; iv) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} ;$ v) Dibal-H, ether.
Scheme 1. Synthesis of cyclopentyl enol intermediate 10.

Results and Discussion

For the synthesis of target carbocyclic C-nucleoside phosphonic acids, we utilized commercially available 1,3 -dihydroxy cyclopropane 5 as a starting material (Scheme 1). Selective monosilylation of diol 5 produced cyclopentanol 6, which was oxidized to the ketone 7 using Dess-Martin conditions. ${ }^{17}$ The cyclopentanone 7 was subjected to Kno-evenagel-type condensation ${ }^{18}$ with ethyl cyanoacetate and potassium tert-butoxide in EtOH to give cyclopentylidene intermediate 8 with a 65% yield. The selective catalytic hydrogenation of $\mathbf{8}$ using $10 \% \mathrm{Pd} / \mathrm{C}$ under hydrogen produced compound 9 as a stereoisomeric mixture.

The intermediate 9 was reduced to the enol 10 by diisobutylaluminium hydride, which was O-alkylated with chloroacetonitrile using cesium carbonate to smoothly produce the enol ether 11 with a 52% two-step yield. Nitrile anion cyclization of $\mathbf{1 1}$ was performed with a 4 -fold excess of LDA in anhydrous tetrahydrofuran at $-70^{\circ} \mathrm{C}$ to produce furan analogs $\mathbf{1 2} \boldsymbol{\alpha}(19 \%)$ and $\mathbf{1 2} \beta(21 \%) .{ }^{19}$ A complete nuclear Overhauser effect (NOE) NMR study enabled clear determination of the relative stereochemistry of $\mathbf{1 2 \alpha}$ and $\mathbf{1 2 \beta}$ (Figure 2). For compound $\mathbf{1 2} \beta$, the spectrum showed a strong NOE (1.5\%) corresponding to $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{H}-4$ ' coupling. On the basis of this finding, we concluded that the 4 '-OTBDMS and the 1 '-furan base of $\mathbf{1 2} \beta$ were located on the b face. In contrast, the spectra of $\mathbf{1 2} \alpha$ showed only a weak $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{H}-4^{\prime}$ NOE (1.0%); hence, it was defined as the $1,4{ }^{\prime}$-trans isomer. The

12α

12β

Figure 2. NOE differences between the proximal hydrogens of 12α and 12β.

Reagents: i) $\mathrm{CICH}_{2} \mathrm{CN}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; ii) LDA, $-70^{\circ} \mathrm{C}$, THF; iii) formamidine acetate, EtOH; iv) BzCl , pyridine; v) TBAF, THF; vi) $\left(\mathrm{EtO}_{2} \mathrm{POCH}_{2} \mathrm{OTf}\right.$, LiO-t$\mathrm{Bu}, \mathrm{THF}$; vii) $\mathrm{NH}_{3}, \mathrm{MeOH}$, rt; viii) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$.

Scheme 2. Synthesis of 5'-norcarbocyclic 7-oxa-7,9-dideazaadenosine phosphonic acid.
aminonitrile $\mathbf{1 2} \beta$ is a versatile intermediate for the synthesis of a number of furo $[3,2-d]$ pyrimidine C-nucleosides. Treatment of $\mathbf{1 2} \beta$ with formamidine acetate $\left(\mathrm{HN}=\mathrm{CHNH}_{2} \cdot \mathrm{HOAc}\right)$ in refluxing ethanol provided $\mathbf{1 3}$ with a 69% yield. For the synthesis of desired nucleoside phosphonic acid, benzoylation of $\mathbf{1 3}$ with benzoyl chloride in dry pyridine yielded the di- N-benzoyl derivative 14 in an 85% yield. ${ }^{20}$ The removal of the silyl protecting group of compound 14 by using tetra- n-butylammonium fluoride (TBAF) afforded the 5'-nornucleoside analogue $\mathbf{1 5}$, which was treated with diethylphosphonomethyl triflate ${ }^{21}$ using lithium t-butoxide to yield the nucleoside phosphonate analogue 16. The selective deprotection of the base moiety of $\mathbf{1 6}$ was achieved by using saturated methanolic ammonia at $25^{\circ} \mathrm{C}$ to afford the corresponding 5^{\prime}-nornucleoside phosphonate derivative 17 . Hydrolysis of $\mathbf{1 7}$ by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6 -lutidine gave a desired 5'norcarbocyclic furo[3,2-d]pyrimidine nucleoside phosphonic acid 18 (Scheme 2). ${ }^{22}$

For the synthesis of 5'-norcarbocyclic pyrrolo[3,2-d]pyrimidine nucleoside phosphonic acid, the common enol intermediate $\mathbf{1 0}$ was treated with aminoacetonitrile monosulfate $\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in MeOH to produce enamine inter-

Reagents: i) aminoacetonitrile monosulfate, $\mathrm{NaOAc}, \mathrm{MeOH}$; ii) (a) ethyl chloroformate, $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH ; iii)
formamidine acetate, EtOH ; iv) BzCl , pyridine; v) TBAF, THF; vi) $(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{OTf}$, $\mathrm{LiO}-t-\mathrm{Bu}$, THF; vii) NH_{3}, MeOH, rt; viii) TMSBr, 2,6-lutidine $\mathrm{CH}_{3} \mathrm{CN}$.
Scheme 3. Synthesis of 5'-norcarbocyclic 9-deazaadenosine phosphonic acid.
mediate 19 with a 75% yield. Sequentially, N-protection of 19 with ethyl chloroformate, DBU-induced cyclization ${ }^{23}$ and deformylation gave the pyrrolo derivatives 20α and $\mathbf{2 0 \beta}$, respectively. ${ }^{24}$ Their relative stereochemistries were also unambiguously determined by NOE studies. Treatment of $\mathbf{2 0} \boldsymbol{\beta}$ with formamidine acetate gave the protected 5 '-nor-carbocyclic-9-deazaadenosine analog 21 with a 62% yield. For the synthesis of 5 '-norcarbocyclic-9-deazaadenosine nucleoside phosphonic acid, perbenzoylation of 21 with benzoyl chloride in dry pyridine yielded the tri- N -benzoyl derivative 22 in an 86% yield by using a procedure similar ${ }^{20}$ to that described for $\mathbf{1 4}$, which was desilylated using TBAF to give 5'-norcarbocyclic nucleoside analog 23, which was phosphonated to produce 24 by the same conditions as those used to prepare 16. The debenzoylation of 24 was achieved by using saturated methanolic ammonia at $25^{\circ} \mathrm{C}$ to afford the corresponding 5 '-norcarbocyclic 9 -deazaadenosine phosphonate 25. From this intermediate, the targeted 5 '-norcarbocyclic pyrrolo[3,2- d]pyrimidine nucleoside phosphonic acid 26 was prepared using a hydrolysis procedure similar to that described for the preparation of 19 (Scheme 3).
It should be noted that the synthesized 5'-norcarbocyclic

Table 1. The antiviral activity of the synthesized nucleoside analog compounds

Compound No.	Anti-HIV-1 (PBM) $\mathrm{EC}_{50}(\mu \mathrm{M})$	Cytotoxicity (PBM) $\mathrm{IC}_{50}(\mu \mathrm{M})$	Cytotoxicity $($ Vero $)$ $\mathrm{IC}_{50}(\mu \mathrm{M})$
$\mathbf{1 8}$	21.6	42	25
$\mathbf{2 6}$	9.7	20	8.4
AZT	0.007	>100	40
PMEA	0.42	>100	25

AZT: azidothymidine. PMEA: 9-[2-(phosphonomethoxy)ethyl]adenine. $\mathrm{EC}_{50}(\mu \mathrm{M})$: concentration $(\mu \mathrm{M})$ required to inhibit the replication of HIV1 by 50%. $\mathrm{IC}_{50}(\mu \mathrm{M})$: concentration $(\mu \mathrm{M})$ required to inhibit the cell growth of unaffected cells by 50%

Table 2. In vitro inhibitory activity for tumor growth of the synthesized nucleoside analog compounds

Compound No.	$\mathrm{L}-1210$ $\mathrm{ID}_{50}(\mu \mathrm{~g} / \mathrm{mL})$	$\mathrm{P}-815$ $\mathrm{ID}_{50}(\mu \mathrm{~g} / \mathrm{mL})$
$\mathbf{1 8}$	7.6	8.3
$\mathbf{2 6}$	1.7	0.8
9-deazaadenosine (1)	<0.01	<0.01

$\mathrm{ID}_{50}(\mu \mathrm{~g} / \mathrm{mL})$: dose $(\mu \mathrm{g} / \mathrm{mL})$ required to inhibit the in vitro tumor growth by 50%. in murine leukemic cell lines
nucleoside phosphonic acids $\mathbf{1 8}$ and $\mathbf{2 6}$ were novel compounds that were not previously reported in the literature. The antiviral activity of nucleoside phosphonic acids is mostly explained by their intracellular metabolism to their diphosphates, which is followed by incorporation into the viral genome and chain termination. ${ }^{25}$ As shown in Table 1, the synthesized compounds $\mathbf{1 8}$ and $\mathbf{2 6}$ were tested against HIV-1 and showed moderate antiviral activity, as well as cytotoxicity, at concentrations up to $100 \mu \mathrm{M}$. This result indicates that their antiviral activity might be a result of cytotoxicity. Anti-HIV activity was determined in human peripheral blood mononuclear (PBM) cells infected with HIV-1 strain LAI. The cytotoxicity of the compounds was evaluated in parallel with their antiviral activity based on the viability of mock-infected cells. ${ }^{26}$
In addition, the final C-nucleosides $\mathbf{1 8}$ and $\mathbf{2 6}$ were screened in vitro inhibitory activity for tumor growth against mouse leukemia cell lines (L-1210, P-815), according to the technique described by Fischer, ${ }^{27}$ with some modifications. ${ }^{28}$ The results summarized in Table 2 indicate that pyrrolo[3,2d]pyrimidine analog 26 was more active than 18, but was much less active than 9-deazaadenosine (1) itself.

Conclusions

Based on the potent biological activity of C-nucleosides and 5 '-norcarbocyclic nucleoside phosphonic acids, we have designed and successfully synthesized novel 5 '-norcarbocyclic C-nucleoside phosphonic acids starting from 1,3-dihydroxy-cyclopentane. The data presented herein indicate that synthesized nucleoside phosphonic acid analogs showed moderate cytotoxicity-derived anti-HIV activity and anti-
leukemic activity. Further studies evaluating the anti-leukemic activity of these systems are in progress.

Experiments

Melting points were determined using a Mel-temp II laboratory device and are uncorrected. NMR spectra were recorded using a JEOL 300 Fourier transform spectrometer (JEOL, Tokyo, Japan). Chemical shifts are reported in parts per million (δ), and signals are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and dd (doublet of doublets). UV spectra were recorded using a Beckman DU-7 spectrophotometer (Beckman, South Pasadena, CA, USA). Mass (MS) spectra were recorded in electrospray ionization (ESI) mode. Elemental analyses were performed using a Perkin-Elmer 2400 analyzer (Perkin-Elmer, Norwalk, CT, USA). Thin-layer chromatography (TLC) was performed using Uniplates (silica gel) purchased from Analtech Co. (7558, Newark, DE, USA). All reactions were carried out under nitrogen atmosphere unless otherwise specified. Anhydrous dichloromethane, benzene, and pyridine were obtained by distillation from CaH_{2}. Anhydrous THF was obtained by distillation from Na and benzophenone, immediately prior to use.
(rel)-(1S and $1 R, 3 S)$-3-(t-Butyldimethylsilanyloxy) cyclopentanol (6). TBDMSCl ($2.29 \mathrm{~g}, 15.25 \mathrm{mmol}$) was added slowly to a solution of $5(1.41 \mathrm{~g}, 13.87 \mathrm{mmol})$ and imidazole $(1.41 \mathrm{~g}, 20.80 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ and stirred for 7 h at the same temperature. Saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ was poured into the mixture and stirred for 1 h at room temperature. The solvent was evaporated under reduced pressure. The residue was dissolved in water (200 $\mathrm{mL})$ and extracted with diethyl ether $(200 \mathrm{~mL})$. The organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to produce compound $\mathbf{6}(1.58 \mathrm{~g}, 53 \%)$ as an isomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.27-$ $3.20(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.52(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~m}, 9 \mathrm{H}), 0.02(\mathrm{~m}, 6 \mathrm{H})$.
(\pm)-3-(t-Butyldimethylsilanyloxy) cyclopentanone (7). Compound $6(2.43 \mathrm{~g}, 11.25 \mathrm{mmol})$ was added to a solution of Dess-Martin periodinane (10.38 g , 24.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and stirred for 24 h at room temperature under argon gas. The solvent was removed and the residue was triturated with diethyl ether (150 mL). Following filtration through a pad of silica gel, the organic solution was washed with a solution of sodium thiosulfate pentahydrate $(13 \mathrm{~g})$ in water $(100 \mathrm{~mL})$, ice-cold saturated $\mathrm{NaHCO}_{3}(80$ mL), and brine (80 mL) and dried over MgSO_{4}. The solvent was filtered, concentrated in vacuo, and purified by silica gel column chromatography (EtOAc/hexane, 1:10) to produce compound $7(2.19 \mathrm{~g}, 91 \%)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.02(\mathrm{~m}, 6 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 215.6$, $63.5,52.6,37.1,31.5,25.7,18.4,-4.7$. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 61.63$; $\mathrm{H}, 10.34$; found: C, $61.72 ; \mathrm{H}, 10.26$; MS $m / z 215(\mathrm{M}+\mathrm{H})^{+}$.
(\pm)-($E \& Z$)-Ethyl 2-cyano-2-[4-(t-butyldimethylsilanyloxy) cyclopentylidene] acetate (8). Potassium tert-butoxide ($6.73 \mathrm{~g}, 60.0 \mathrm{mmol}$) was added to a solution of $7(2.57$ $\mathrm{g}, 12.0 \mathrm{mmol})$ and ethyl cyanoacetate $(6.78 \mathrm{~g}, 60.0 \mathrm{mmol})$ in ethanol $(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 5 h at room temperature and concentrated under reduced pressure. The mixture was quenched by water $(12 \mathrm{~mL})$ and further diluted with 150 mL of water. The mixture was then extracted with EtOAc (200 m) 2 times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and then concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/hexane, $1: 15)$ to give crude ester derivative $\mathbf{8}(7.8 \mathrm{~g}, 65 \%)$ as a colorless oil. Without further purification, compound $\mathbf{8}$ was subjected to the next reaction.
(rel)-($1 S$ and $1 R, 4 R$)-Ethyl-2-[4-(t-butyldimethylsilan-yloxy)cyclopentyl]-2-isocyanoacetate (9). To a solution of $\mathbf{8}(1.2 \mathrm{~g}, 3.88 \mathrm{mmol})$ in methanol (10 mL), $10 \% \mathrm{Pd} / \mathrm{C}(120$ mg) was added. The mixture was thoroughly deoxygenated, then saturated with hydrogen and stirred for 24 h . The charcoal was removed by filtration through a short Celite ${ }^{\circledR}$ pad, which was thoroughly washed with methanol. Evaporation of the solvent gave a crude product which was purified by column chromatography (EtOAc/hexane, 1:10) to yield 1.07 $\mathrm{g}(89 \%)$ of 9 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.28(\mathrm{~m}, 1 \mathrm{H})$, 2.24-2.25 (m, 1H), 1.75-1.35 (m, 6H), $1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}: \mathrm{C}$, 61.69 ; H, 9.38 ; N, 4.50; found: C, 61.82; H, 9.34; N, 4.54; MS $m / z 312(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1S and $1 R, 4 R)$-2-[4-(t-Butyldimethylsilanyloxy) cyclopentyl]-3-hydroxyacrylonitrile (10). Diisobutylaluminium hydride ($3.98 \mathrm{~mL}, 1 \mathrm{M}$ in hexane) was added to a solution of $9(1.24 \mathrm{~g}, 3.98 \mathrm{mmol})$ in anhydrous ether $(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ over 10 min . The resulting mixture was stirred for 10 min and quenched with $\mathrm{MeOH}(8 \mathrm{~mL})$. The resulting white solid was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ hexane, 1:10) to give enol 10 ($691 \mathrm{mg}, 65 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.44(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.34(\mathrm{~m}, 6 \mathrm{H}), 0.87-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.02-0.03(\mathrm{~m}$, 6 H); Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Si}$: C, 62.87; H, 9.42; N, 5.24; found: C, 62.74; H, 9.50, N, 5.19.
(rel)-(E\&Z)-3-(Cyanomethoxy)-2-[(1S and $1 R, 4 R)-4-(t-$ butyldimethylsilanyloxy) cyclopentyl] acrylonitrile (11). To a solution of compound $10(1.10 \mathrm{~g}, 4.14 \mathrm{mmol})$, cesium carbonate $5.39 \mathrm{~g}, 16.56 \mathrm{mmol}$) in anhydrous DMF (30 mL) was added chloroacetonitrile ($2.48 \mathrm{~g}, 33.12 \mathrm{mmol}$), and the solution was stirred at room temperature for 24 h . The reaction mixture was poured water $(150 \mathrm{~mL})$ and extracted with t-butyl methyl ether $(150 \mathrm{~mL})$ three times. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (EtOAc/Benzene, 1:10) to give 11 ($1.02 \mathrm{~g}, 81 \%$) as an isomeric mixture. The mixture was subjected directly to
the next step.
(rel)-3-Amino-4-[(1'R,4'R)-4'-(t-butyldimethylsilanyloxy) cyclopentyl] furan-2-carbonitrile (12a) and (rel)-3-amino-4-[(1'S,4'R)-4'-(t-butyldimethylsilanyloxy) cyclopentyl] furan-2-carbonitrile (12 β). To the solution of the carbonitrile $\mathbf{1 1}(1.6 \mathrm{~g}, 5.22 \mathrm{mmol})$ in anhydrous THF (20 mL), a solution of LDA ($2.24 \mathrm{~g}, 21 \mathrm{mmol}$) in anhydrous THF (15 mL) was added dropwise at $-70^{\circ} \mathrm{C}$ and stirred for 2 h . The mixture was quenched with a saturated solution of ammonium chloride (150 mL) and stirred for 1 h at room temperature. The mixture was extracted with EtOAc $(150 \mathrm{~mL}) 3$ times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($\mathrm{EtOAc} /$ Hexane, $3: 1$) to give $\mathbf{1 2 \alpha}$ (303 mg , 19%) and $\mathbf{1 2} \beta(335 \mathrm{mg}, 21 \%)$. Spectroscopic data for $\mathbf{1 2 \alpha}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 3.31-3.29 (m, 1H), 2.82-2.83 (m, 1H), 2.02-1.37 (m, 6H), 0.88-0.89 (m, 9H), $0.02(\mathrm{~s}, 6 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$: C, $62.70 ; \mathrm{H}, 8.55$; N, 9.14 ; found: C, 62.56; H, 8.50; N, 9.29; MS m/z 307 (M+H) ${ }^{+}$. Spectroscopic data for $\mathbf{1 2 \beta}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.25(\mathrm{~s}$, 1 H), 4.30 (br, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $3.34-3.31(\mathrm{~m}, 1 \mathrm{H})$, 2.81-2.79 (m, 1H), 2.00-1.35 (m, 6H), 0.88-0.89 (m, 9H), 0.03 (s, 6H); Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$: C, 62.70 ; H, 8.55; N, 9.14; found: C, 62.85 ; H, 8.63; N, 9.08; MS m/z 307 $(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-[(1S,4'R)-9-[4'-(t-Butyldimethylsilanyloxy) cyclopentyl] 7-oxa-7,9-dideazaadenosine (13). To a solution of $\mathbf{1 2} \boldsymbol{\beta}$ ($650 \mathrm{mg}, 2.12 \mathrm{mmol}$) in EtOH (20 mL), formamidine acetate ($2.20 \mathrm{~g}, 21.2 \mathrm{mmol}$) was added and the reaction mixture was refluxed for 48 h . The solvent was concentrated under reduced pressure, and the residue was partitioned between dichloromethane and water. The organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1\right)$ to give $13(487 \mathrm{mg}, 69 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta$ 9.28 (br s, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $8.63(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H})$, 3.29-3.30 (m, 1H), 2.82-2.83 (m, 1H), 2.07-2.08 (m, 1H), 1.94-1.47 (m, 5H), 0.88-0.89 (m, 9H), 0.03-0.04 (m, 6H); Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}(+1.0 \mathrm{MeOH})$: C, 59.19 ; H , 8.55, N, 11.50; found: C, 59.28; H, 8.48; N, 11.58; MS m/z $334(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-[(1'S,4'R)-9-[4'-(t-Butyldimethylsilanyloxy) cyclopentyl] 4- N -dibenzoyl-7-oxa-7,9-dideazaadenosine (14). Benzoyl chloride ($2.12 \mathrm{~g}, 15.12 \mathrm{mmol}$) was added dropwise to a stirred solution of compound $\mathbf{1 3}(1.26 \mathrm{~g}, 3.78 \mathrm{mmol})$ in dry pyridine $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight at rt . The reaction mixture was quenched by water $(10 \mathrm{~mL})$ and stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2$ times. The combined organic layers were washed with cold saturated NaHCO_{3} solution, then washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromato-
graphy (EtOAc / n-hexane, $1: 8$) to give $14(1.74 \mathrm{~g}, 85 \%)$ as a form. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.45$ $(\mathrm{m}, 11 \mathrm{H}), 3.34-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.79(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.48$ (m, 6H), 0.89-0.90 (m, 9H), 0.02-0.03 (m, 6H); Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}$: C, 68.73 ; $\mathrm{H}, 6.51, \mathrm{~N}, 7.76$; found: C, 68.87; H, 6.46; N, 7.88; MS $m / z 542(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-9-(4'-Cyclopentyloxy) 4-N-dibenzoyl-7-oxa-7,9-dideazaadenosine (15). To a solution of compound $14(320 \mathrm{mg}, 0.59 \mathrm{mmol})$ in THF (10 mL), tetrabutylammonium fluoride (TBAF; $0.65 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) at $0{ }^{\circ} \mathrm{C}$ was added. The mixture was stirred for 5 h at room temperature and concentrated. The residue was purified by silica gel column chromatography (EtOAc/n-hexane, 1:1) to give compound 15 ($176 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.34(\mathrm{~m}, 11 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.81-$ $2.79(\mathrm{~m}, 1 \mathrm{H})$, , 2.06-2.07 (m, 1H), 1.91-1.42 (m, 5H); Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $70.25 ; \mathrm{H}, 4.95, \mathrm{~N}, 9.83$; found: C, 70.37; H, 4.88; N, 9.89; MS $m / z 428(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-Diethyl-9-[4'-(cyclopentyloxy) 4-N-di-benzoyl-7-oxa-7,9-dideazaadenosine] methylphosphonate (16). Both LiOt-Bu (2.996 mL of 0.5 M solution in THF, 1.498 mmol) and a solution of diethyl phosphonomethyltriflate ($449 \mathrm{mg}, 1.498 \mathrm{mmol}$) in 16.0 mL of THF were slowly added to a solution of the $\mathbf{1 5}$ analog ($320 \mathrm{mg}, 0.749$ mmol) in 8.0 mL of THF at $0^{\circ} \mathrm{C}$ and stirred overnight at room temperature under anhydrous conditions. The mixture was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and further diluted with additional $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 100 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography (n hexane/EtOAc, 1:2) to produce $16(233 \mathrm{mg}, 54 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.39(\mathrm{~m}, 11 \mathrm{H}), 4.12-$ $4.09(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-3.07(\mathrm{~m}, 1 \mathrm{H})$, 2.78-2.79 (m, 1H), 2.06-2.07 (m, 1H), 1.88-1.44 (m, 5H), 1.15-1.13 (m, 6H); Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}: \mathrm{C}, 62.39$; H, 5.58; N, 7.28; found: C, 62.51; H, 5.49; N. 7.36; MS m/z $578(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-Diethyl-9-[(4'-cyclopentyloxy) 7-oxa-7,9dideazaadenosine] methylphosphonate (17). A solution of $16(280 \mathrm{mg}, 0.485 \mathrm{mmol})$ in saturated methanolic ammonia $(12 \mathrm{~mL})$ was stirred overnight at room temperature for 6 h and the volatiles were evaporated. The residue was purified by silica gel column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8\right)$ to produce $17(91 \mathrm{mg}, 51 \%) .{ }^{1} \mathrm{H}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta$ $9.30\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $8.68(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}$, $1 \mathrm{H}), 4.14-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.13$ $(\mathrm{m}, 1 \mathrm{H}), 2.78-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.13$ (m, 6H); Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}(+1.0 \mathrm{MeOH})$: C, 50.89 ; H, 7.03 ; N, 10.47; Found: C, 50.77; H, 6.93; N, 10.32; MS $m / z 370(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-9-[(4'-Cyclopentyloxy) 7-oxa-7,9-dideazaadenosine] methylphosphonic acid (18). $\mathrm{TMSBr}(786 \mathrm{mg}$, 5.14 mmol) was added to a solution of phosphonate 17 (190 $\mathrm{mg}, 0.514 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ and 2,6lutidine ($1.10 \mathrm{~g}, 10.28 \mathrm{mmol}$). The mixture was heated over-
night at $69^{\circ} \mathrm{C}$ under nitrogen and then concentrated in vacuo. The residue was co-evaporated from concentrated aqueous ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH} ; 2 \times 20.6 \mathrm{~mL}\right)$ and purified by triturating with acetone (10.3 mL) twice and removing the acetone by evaporation. The residue was then purified by preparative reverse-phase column chromatography using C18 silica gel. Lyophilization of the appropriate fraction produced phosphonic acid salt $\mathbf{1 8}$ ($98 \mathrm{mg}, 58 \%$ yield) as a white salt (ammonium salt). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right) \delta$ $8.65(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.17$ (m, $1 \mathrm{H}), 2.77-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.41(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, $75 \mathrm{MHz}) \delta 151.4,147.6,147.9,138.1,117.0,85.6,62.9(J=$ $45.0 \mathrm{~Hz}), 50.2,33.8,31.2,27.1$; HPLC, $t_{\mathrm{R}}=10.86 \mathrm{~min}$; HRMS, $[\mathrm{M}-\mathrm{H}]^{+}$calcd. 312.0765, found 312.0766.
(rel)-(E\&Z)-3-(Cyanomethylamino)-2-[(1S and $1 R, 4 R)-$ 4-(t-butyldimethylsilanyloxy) cyclopentyl] acrylonitrile (19). Compound 10 ($1.22 \mathrm{~g}, 4.56 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ followed by addition of aminoacetonitrile • monosulfate $(2.81 \mathrm{~g}, 18.24 \mathrm{mmol})$ and sodium acetate (2.61 $\mathrm{g}, 31.92 \mathrm{mmol}$). The mixture was stirred for 6 h at room temperature, diluted with CHCl_{3}, and washed with water. The aqueous phase was back-washed with CHCl_{3}, the combined organic phase was dried, and the solvent was evaporated to give crude product $19(1.04 \mathrm{~g}, 75 \%)$ as a mixture of E / Z diastereomers. The mixture was subjected directly to the next step.
(rel)-3-Amino-4-[(1'R,4'R)-4'-(t-butyldimethylsilanyloxy) cyclopentyl] 1H-pyrrole-2-carbonitrile (20α) and (rel)-3-amino-4-[(1'S,4'R)-4'-(t-butyldimethylsilanyloxy) cyclopentyl] 1H-pyrrole-2-carbonitrile (20 β). To a solution of $19(2.56 \mathrm{~g}, 8.38 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added 1,8-diazabicyclo[5,4,0] undec-7-ene (DBU, 2.5 mL , 16.78 mmol) and ethyl chloroformate ($1.2 \mathrm{~mL}, 12.57 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at room temperature. To the mixture, additional DBU ($2.5 \mathrm{~mL}, 16.78 \mathrm{mmol}$) was added to induce cyclization, after which it was stirred at the same temperature for 20 h . The reaction mixture was diluted with $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$ and extracted with an aqueous solution of citric acid $(10 \%, 2 \times 120 \mathrm{~mL})$. The combined aqueous layer was back-washed with CHCl_{3}. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in EtOH $(50 \mathrm{~mL})$, treated with potassium carbonate $(1.15 \mathrm{~g}, 8.38$ mmol) and stirred for 1 h at rt . The reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ two times. The combined organic layer was dried with anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by flash column chromatography (EtOAc / n-hexane, 3:1) to give $\mathbf{2 0 \alpha}$ ($409 \mathrm{mg}, \mathbf{1 6 \%}$) and 20β ($434 \mathrm{mg}, \mathbf{1 7 \%}$). Spectroscopic data for 20 $\alpha:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.87$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $6.51(\mathrm{~s}, 1 \mathrm{H}), 4.34\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 3.37-3.38 (m, 1H), 2.82-2.83 (m, 1H), 2.02$1.50(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{OSi}$: C, 62.91; H, 8.91; N, 13.75; found: C, 63.06; H, 8.85; N, 13.69; MS m/z $306(\mathrm{M}+\mathrm{H})^{+}$. Spectroscopic data for 20: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.91\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $6.58(\mathrm{~s}, 1 \mathrm{H}), 4.41\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange-
able), 3.31-3.32 (m, 1H), 2.79-2.80 (m, 1H), 1.98-1.47 (m, $6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{OSi}$: C, 62.91; H, 8.91; N, 13.75; found: C, $62.83 ; \mathrm{H}, 8.96 ; \mathrm{N}$, 13.87; MS m/z $306(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1S,4'R)-9-[4'-(t-Butyldimethylsilanyloxy) cyclopentyl] 9-deazaadenosine (21). To a solution of 20b $(450 \mathrm{mg}$, $1.47 \mathrm{mmol})$ in $\mathrm{EtOH}(12 \mathrm{~mL})$, formamidine acetate $(1.53 \mathrm{~g}$, 14.7 mmol) was added and the reaction mixture was refluxed for 36 h . The solvent was concentrated under reduced pressure, and the residue was diluted with dichloromethane $(100 \mathrm{~mL})$ and extracted with water $(2 \times 100 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1\right)$ to give $21(302 \mathrm{mg}, 62 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 12.53$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 9.04 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $8.45(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, singlet with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.36-3.37(\mathrm{~m}, 1 \mathrm{H})$, 2.80-2.81 (m, 1H), 1.99-1.47 (m, 6H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}$, 6 H); Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{OSi}(+1.0 \mathrm{MeOH})$: C, 59.35 ; H, 8.85, N, 15.38; found: C, 59.49; H, 8.78; N, 15.50; MS m/z $333(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-9-[4'-(t-Butyldimethylsilanyloxy) cyclopentyl] 7- N -benzoyl-4- N -dibenzoyl-9-deazaadenosine (22). Benzoyl chloride ($3.55 \mathrm{~g}, 25.26 \mathrm{mmol}$) was added dropwise to a stirred solution of compound $21(1.40 \mathrm{~g}, 4.21 \mathrm{mmol})$ in dry pyridine $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight at room temperature. The reaction mixture was quenched by water $(20 \mathrm{~mL})$ and stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2$ times. The combined organic layers were washed with cold saturated NaHCO_{3} solution, then washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (EtOAc/n-hexane, $1: 8$) to give $22(2.33 \mathrm{~g}, 86 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.68$ $(\mathrm{s}, 1 \mathrm{H}), 7.97-7.29(\mathrm{~m}, 16 \mathrm{H}), 3.32-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-1.43(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}$: C, $70.78 ; \mathrm{H}, 6.25, \mathrm{~N}, 8.69$; found: C, 70.64 ; H, 6.36; N, 8.57; MS m/z $645(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-9-[(4'-Cyclopentyloxy) 7-N-benzoyl-4- N -dibenzoyl-9-deazaadenosine (23). To a solution of compound $22(860 \mathrm{mg}, 1.33 \mathrm{mmol})$ in THF (12 mL), tetrabutylammonium fluoride (TBAF, $1.59 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) at $0{ }^{\circ} \mathrm{C}$ was added. The mixture was stirred for 6 h at room temperature and concentrated. The residue was purified by silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{n}$-hexane, $1: 1$) to give compound 23 ($535 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.34(\mathrm{~m}, 16 \mathrm{H}), 3.35-3.36(\mathrm{~m}, 1 \mathrm{H})$, 2.81-2.82 (m, 1H), 2.01-2.02 (m, 1H), 1.97-1.46 (m, 5H); Anal. calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 72.44 ; $\mathrm{H}, 4.94, \mathrm{~N}, 10.56$; found: C, $72.56 ; \mathrm{H}, 4.85$; N, 10.69; MS $m / z 531(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'S,4'R)-Diethyl-9-[(4'-cyclopentyloxy]) 7-N-benzo-yl-4- N -dibenzoyl-9-deazaadenosine] methylphosphonate (24). Phosphonation of the alcohol 23 was accomplished by similar reaction procedures as were used for $\mathbf{1 6}$ to produce

24 with a 60% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.78$ (s, 1 H), 8.08-7.34 (m, 16H), 4.10-4.08 (m, 4H), 3.79 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.24-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.40$ (m, 6H), 1.15-1.13 (m, 6H); Anal. calcd. for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{P}$: C, 65.29; H, 5.48; N, 8.23; found: C, 65.44; H, 5.41; N. 8.15; MS $m / z 681(\mathrm{M}+\mathrm{H})^{+}$.

(rel)-(1'S,4'R)-Diethyl-9-[(4'-cyclopentyloxy) 9-deaza-

 adenosine] methylphosphonate (25). Ammonolysis of the tri- N -benzoyl protection groups of 24 was performed by similar reaction conditions as those used for $\mathbf{1 7}$ to produce 25 with a 49% yield; ${ }^{1} \mathrm{H}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 12.18$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 9.01 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $8.52(\mathrm{~s}, 1 \mathrm{H}), 7.89\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, singlet with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, 4.11-4.09 (m, 4H), 3.81 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.31-3.32 (m, $1 \mathrm{H}), 2.84-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.13-1.10(\mathrm{~m}$, 6 H); Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$ (+1.0 MeOH): C, 51.02; H, 7.30; N, 13.99; Found: C, 50.91; H, 7.23; N, 13.85; MS $m / z 369(\mathrm{M}+\mathrm{H})^{+}$.(rel)-(1'S,4'R)-9-(4'-Cyclopentyloxy) 9-deazaadenosine] methylphosphonic acid (26). Deprotection of diethylphosphonate 25 to phosphonic acid 26 was performed by similar reaction conditions as were used for $\mathbf{1 8}$ with a 51% yield (ammonium salt). UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 268.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.86-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.80(\mathrm{~m}, 1 \mathrm{H}), ~ 2.01-1.45$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right) \delta 154.6,145.3,134.7$, $129.4,118.7,84.8,62.7(J=40.0 \mathrm{~Hz}), 48.5,36.7,32.6,26.9$; HPLC, $t_{\mathrm{R}}=10.71 \mathrm{~min}$; HRMS, $[\mathrm{M}-\mathrm{H}]^{+}$calcd.: 311.0657; found: 311.0658 .

References

1. (a) Shaban, M. A. E.; Nasr, A. Z. Adv. Heterocycl. Chem. 1997, 68, 223-432. (b) Shaban, M. A. E. Adv. Heterocycl. Chem. 1997, 70, 163-337. (c) Liang, C.; Ma, T.; Cooperwood, J. S.; Du, J.; Chu, C. K. Carbohydr. Res. 1997, 303, 33-38. (d) Zhou, J.; Yang, M.; Akdag, A.; Wang, H.; Schneller, S. W. Tetrahedron 2008, 64, 433-438.
2. Buchenal, J. H.; Ciovacco, K.; Kalaher, K.; O’Toole, T.; Kiefner, R.; Dowing, M. D.; Chu, C. K.; Watanabe, K. A.; Wempen, I.; Fox, J. J. Cancer Res. 1976, 36, 1520-1523.
3. (a) Fuertes, M.; Garcia-Lopez, M. T.; Garcia-Munoz, G.; Stud, M. J. Org. Chem. 1976, 41, 4074-4077. (b) Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; Streeter, D. C.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R. W.; Robins, R. K. J. Med. Chem. 1977, 20, 256262.
4. Srivastava, P. C.; Robins, R. K. J. Med. Chem. 1983, 26, 445-448.
5. (a) Chu, C. Y.; Zuckerman, L. B.; Sato, S.; Crabtree, G. W.; Bogden, A. E.; Lim, M. I.; Klein, R. S. Biochem. Pharmacol. 1984, 33, 1229-1234. (b) Zimmerman, T. P.; Deeprose, R. D.; Wolberg, G.; Stopford, C. R.; Duncan, G. S.; Miller, W. H.; Miller, R. L.; Lim, M. I.; Ren, W. Y.; Klein, R. S. Biochem. Pharmacol. 1983, 32, 1211-1217.
6. (a) Tam, S. Y.-K.; Klein, R. S.; Wempen, I.; Fox, J. J. J. Org. Chem. 1979, 44, 4547-4553. (b) Tam, S. Y.-K.; Hwang, J. S.; De Las Heras, F. G.; Klein, R. S.; Fox, J. J. J. Heterocycl. Chem. 1976, 13, 1305-1308.
7. (a) Fissekis, J. D.; Creegan, B. M. J. Org. Chem. 1967, 32, 35953603. (b) Katagiri, N.; Haneda, T.; Kaneko, C. Chem. Pharm.

Bull. 1986, 34, 4875-4878. (c) Katagiri, N.; Haneda, T.; Hayasaka, E.; Watanabe, N.; Kaneko, C. J. Org. Chem. 1988, 53, 226-227. (d) Lee, C. H.; Kim, J. Y.; Kim, W. J.; Kim, Y. H. Heterocycles 1990, 31, 211-214. (e) Katagiri, N.; Tomura, M.; Haneda, T.; Kaneko, C. J. Chem. Soc., Chem. Commun. 1987, 19, 1422-1423. (f) Coockson, R. C.; Dufield, P. J.; Scopes, D. I. C. J. Chem. Soc., Perkin Trans. 1 1986, 393-398. (g) Takahashi, T.; Kotsubo, H.; Koizumi, T. Tetrahedron: Asymmetry 1991, 2, 1035-1040. (h) Zhou, J.; Yang, M.; Schnell, S. W. Tetrahedron Lett. 2004, 45, 82338234.
8. Zhou, J.; Yang, M.; Akdag, A.; Wang, H.; Schneller, S. W. Tetrahedron 2008, 64, 433-438.
9. (a) Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571623. (b) Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 17451768. (c) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S.; Earl, R. A.; Guedj, R. Tetrahedron 1994, 50, 1061110670. (d) Crimmins, M. T. Tetrahedron 1998, 54, 9229-9272. (e) Ariona, O.; Gómez, A. M.; López, J. C.; Plumet, J. Chem. Rev. 2007, 107, 1919-2036. (f) Jeong, L. S.; Lee, J. A. Antiviral Chem. Chemother. 2004, 15, 235-250. (g) Boutureira, O.; Matheu, M. I.; Díazm, Y.; Castillón, S. Chem. Soc. Rev. 2013, 42, 5056-5072.
10. Stoeckler, J. D.; Cambor, C.; Parks, R. E., Jr. Biochemistry 1980, 19, 102-107.
11. Boojamra, C. G.; Parrish, J. P.; Sperandio, D.; Gao, Y.; Petrakovsky, O. V.; Lee, S. K.; Markevich, D. Y.; Vela, J. E.; Laflamme, G.; Chen, J. M.; Ray, A. S.; Barron, A. C.; Sparacino, M. L.; Desai, M. C.; Kim, C. U.; Cihlar, T.; Mackman, R. L. Bioorg. Med. Chem. 2009, 17, 1739-1746.
12. Koh, Y. H.; Shim, J. H.; Wu, J. Z.; Zhong, W.; Hong, Z.; Girardet, J. L. J. Med. Chem. 2005, 48, 2867-2875.
13. Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. J. Am. Chem. Soc. 2005, 127, 5056-5065.
14. Kim, C. U.; Luh, B. Y.; Misco, P. F.; Bronson, J. J.; Hitchcock, M. J.; Ghazzouli, I.; Martin, J. C. J. Med. Chem. 1990, 33, 1207-1213.
15. Kim, C. U.; Luh, B. Y.; Martin, J. C. J. Org. Chem. 1991, 56, 26422647.
16. (a) De Clercq, E. Biochem. Pharmacol. 2011, 82, 99-109. (b) Balzarini, J.; Hao, Z.; Herdewijn, P.; Johns, D. G.; De Clercq, E. Proc. Natl. Acad. Sci. USA 1991, 88, 1499-1503.
17. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
18. Chun, B. K.; Song, G. Y.; Chu, C. K. J. Org. Chem. 2001, 66, 4852-4858.
19. Bhattacharya, B. K.; Otter, B. A.; Berens, R. L.; Klein, R. S. Nucleosides Nucleotides 1990, 9, 1021-1043.
20. Rao, K. V. B.; Ren, W.-Y.; Burchenal, J. H.; Klein, R. S. Nucleosides Nucleotides 1986, 5, 539-569.
21. (a) Phillion, D. P.; Andrew, S. S. Tetrahedron Lett. 1986, 27, 14771480. (b) Xu, Y.; Flavin, M. T.; Xu, Z.-Q. J. Org. Chem. 1996, 61, 7697-7701.
22. Hocková, D.; Holý, A.; Masojídková, M.; Keough, D. T.; De Jersey, J.; Guddat, L. W. Bioorg. Med. Chem. 2009, 17, 6218-6232.
23. Lim, M. I.; Klein, R. S. Tetrahedron Lett. 1981, 22, 25-28.
24. Kamath, V. P.; Ananth, S.; Bantia, S.; Morris, P. E. J. Med. Chem. 2004, 47, 1322-1324.
25. Holy, A.; Votruba, I.; Merta, A.; Cerny, J.; Vesely, J.; Vlach, J.; Sediva, K.; Rosenberg, I.; Otmar, M.; Hrebabecky, H.; Travniekb, M.; Vonkac, V.; Snoeck, R.; De Clercq, E. Antiviral Res. 1990, 13, 295-311.
26. Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. J. Virol. Methods 1988, 20, 309-321.
27. Fischer, G. A. Ann. N.Y. Acad. Sci. 1958, 76, 673-680.
28. Burchenal, J. H.; Chou, T.-C.; Lokye, L.; Smith, R. S.; Watanabe, K. A.; Su, T.-L.; Fox, J. J. Cancer Res. 1982, 42, 2598-2600.

