• 제목/요약/키워드: 3-DOF Simulation

검색결과 160건 처리시간 0.026초

공리적 설계를 이용한 공간형 3자유도 기구의 최적설계 (The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design)

  • 한석영;이병주;김선정;김종오;정구봉
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

엔터테인먼트용 조류형 2족 보행 로봇의 설계 및 구현 (Design and Implementation of a Bird Type Biped Robot for Entertainment)

  • 김동진;유승환;신윤덕;장승익;기창두
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.38-45
    • /
    • 2005
  • In this paper, a bird type biped robot for entertainment controlled by R/C servo motors, is built using the embedded RTOS (Real Time Operating System). ${\mu}C/OS-II$ V2.00 is used fur RTOS and the board 80C196KC for main CPU. A control algorithm of R/C servo motors is proposed on ${\mu}C/OS-II's$ preemptive and deterministic property without any extra PWM module. The realized biped robot has 19DOF, that is, 12DOF for both legs, 6DOF for both arms and 1DOF for neck. To verify the proper walking process, ZMP(Zero Moment Point) theory is applied and the simulation has been done by ADAMS.

중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석 (Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo)

  • 박광필;차주환;이규열
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구 (A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control)

  • 백승주;오재윤
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.

A Three-Degree-of-Freedom Anthropomorphic Oculomotor Simulator

  • Bang Young-Bong;Paik Jamie K.;Shin Bu-Hyun;Lee Choong-Kil
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.227-235
    • /
    • 2006
  • For a sophisticated humanoid that explores and learns its environment and interacts with humans, anthropomorphic physical behavior is much desired. The human vision system orients each eye with three-degree-of-freedom (3-DOF) in the directions of horizontal, vertical and torsional axes. Thus, in order to accurately replicate human vision system, it is imperative to have a simulator with 3-DOF end-effector. We present a 3-DOF anthropomorphic oculomotor system that reproduces realistic human eye movements for human-sized humanoid applications. The parallel link architecture of the oculomotor system is sized and designed to match the performance capabilities of the human vision. In this paper, a biologically-inspired mechanical design and the structural kinematics of the prototype are described in detail. The motility of the prototype in each axis of rotation was replicated through computer simulation, while performance tests comparable to human eye movements were recorded.

3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계 (Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model)

  • 정태영;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.

KCS 선형의 4자유도 조종성능 추정 (Prediction of Maneuverability of KCS with 4 Degrees of Freedom)

  • 김연규;여동진;손남선;김선영;윤근항;오병익
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.267-274
    • /
    • 2011
  • This paper presents the results of prediction of maneuverability of KCS about 4 degree of freedom(DOF) including roll motion. The prediction is carried out by CPMC captive model test. The CPMC(Computerized Planar Motion Carriage) with captive model test equipment including roll moment gage is installed at Ocean Engineering Tank of MOERI. KCS is the container ship open to the world by MOERI. To predict the 4 DOF maneuverability of a ship some tests with roll angle are conducted. And the prediction results of maneuverability by simulation are compared with the results of free running model test. The simulation results agree well with those of free running model tests.

3자유도 병렬기구의 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Three-DOF Translational Parallel Manipulator)

  • 신욱진;조남규
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.44-52
    • /
    • 2004
  • This paper proposed a error compensation methodology for three-DOF translational parallel manipulator. The proposed method uses CMM (coordinate measuring machine) as metrology equipment to measure the position of end-effector. To identify the transform relationships between the coordinate system of the parallel manipulator and the CMM coordinate system, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique, accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate the compensating error components at any arbitrary position of the end-effector is derived. In this paper, Monte Carlo simulation method is applied to simulate the compensation process. Through the simulation results, the proposed error compensation method proves its effectiveness and feasibility.

Design and Performance Evaluation of a 3-DOF Mobile Microrobot for Micromanipulation

  • Park, Jungyul;Kim, Deok-Ho;Kim, Byungkyu;Kim, Taesung;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1268-1275
    • /
    • 2003
  • In this paper, a compact 3-DOF mobile microrobot with sub-micron resolution is presented. It has many outstanding features : it is as small as a coin ; its precision is of sub-micrometer resolution on the plane ; it has an unlimited travel range ; and it has simple and compact mechanisms and structures which can be realized at low cost. With the impact actuating mechanism, this system enable both fast coarse motion and highly precise fine motion with a pulse wave input voltage controlled. The 1 -DOF impact actuating mechanism is modeled by taking into consideration the friction between the piezoelectric actuator and base. This modeling technique is extended to simulate the motion of the 3-DOF mobile robot. In addition, experiments are conducted to verify that the simulations accurately represent the real system. The modeling and simulation results will be used to design the model-based controller for the target system. The developed system can be used as a robotic positioning device in the micromanipulation system that determines the position of micro-sized components or particles in a small space, or assemble them in the meso-scale structure.

선회 조향시 강건 제어에 의한 롤 안정성 개선 (Improving the Roll Stability of a Vehicle by H$_{\infty}$ Control)

  • 김효준;양현석;박영필
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.92-99
    • /
    • 2001
  • This paper presents a simulation study using a robust controller to improve the roll stability of a vehicle. The controller is designed in the framework of an output feedback H$_{\infty}$ control scheme based on the 3DOF linear vehicle model, solving the mixed-sensitivity problem to guarantee the robust stability and disturbance rejection with respect to parameter variations due to laden and running vehicle conditions. In order to investigate the feasibility of the active roll control system in a real car, its performance is evaluated by simulation in a 10DOF full vehicle model with actuator dynamics and tire characteristics.

  • PDF