• Title/Summary/Keyword: 3-D surface

Search Result 5,611, Processing Time 0.035 seconds

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.

Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin (울금의 주요 성분인 커큐민과 나노 마이셀링 기법 적용 염화 커큐민의 트랜스타이레틴 활성 부위에 대한 결합 친화도 비교분석)

  • Kim, Dong-Chan;Song, Pyo
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.253-258
    • /
    • 2016
  • In this study, nano-micelled curcumin was produced with natural sea salt with a view to comparing the in silico molecular binding affinity of pure curcumin compound to the active site of transthyretin. Using an optical light microscope and an electron microscope, it was found that the structure of the surface and the cross-section of nano-micelled curcumin was significantly different from natural sea salt. In particular, the crystal structure and nano-components in the nano-micelled curcumin were united, and the layer was more strongly stabilized than untreated salts. In the virtual 3D structure, in silico molecular docking study, the ligand binding affinity of nano-micelled curcumin to the transthyretin active site was found to be higher than that of pure curcumin. In addition, a nano-micelled curcumin formula interacted with more amino acid residues of transthyretin domains. The pharmacophore feature of the nano-micelled curcumin also showed more condensed and constrained features than normal curcumin. These results suggest that nano-micelled curcumin may effectively bind to and stabilize transthyretin, thereby regulating transthyretin-related physiological diseases. Collectively, the nano-micelled curcumin process suggests that normal curcumin can be modified more efficiently into the novel bio-functional chemical formula to stabilize the transthyretin structure. Therefore, the nano-micelled curcumin process can be applied to the field of the regulation of Alzheimer's disease.

Carbothermic Reduction of Zinc Oxide with Iron Oxide (산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響))

  • Kim, Byung-Su;Park, Jin-Tae;Kim, Dong-Sik;Yoo, Jae-Min;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.44-51
    • /
    • 2006
  • Most electric arc furnace dust (EAFD) treatment processes to recover zinc from EAFD employ carbon as a reducing agent for the zinc oxide in the EAFD. In the present work, the reduction reaction of zinc oxide with carbon in the present of iron oxide was kinetically studied. The experiments were carried out at temperatures between 1173 K and 1373 K under nitrogen atmosphere using a weight-loss technique. From the experimental results, it was concluded that adding the proper amount of iron oxide to the reactant accelerates the reaction rate of zinc oxide with carbon. This is because iron oxide in the reduction reaction of zinc oxide with carbon promotes the carbon gasification reaction. The spherical shrinking core model for a surface chemical reaction control was found to be useful in describing kinetics of the reaction over the entire temperature range. The reaction has an activation energy of 53 kcal/mol (224 kJ/mol) for ZnO-C reaction system, an activation energy of 42 kcal/mol (175 kJ/mol) for $ZnO-Fe_{2}O_{3}-C$ reaction system, and an activation energy of 44 kcal/mol (184 kJ/mol) for ZnO-mill scale-C reaction system.

Extraction of Total Flavonoids from Lemongrass Using Microwave Energy: Optimization Using CCD-RSM (마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sick;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • In this study, we measured total flavonoids after extracting the total flavonoids from lemongrass which is known to have a high content of antioxidant ingredients when using microwave energy. Also, optimal extraction conditions of active ingredients using central composite design-response surface methodology (CCD-RSM) were presented. Both ultrapure water and alcohol were used as extraction solvents and the volume ratio of ethanol/ultrapure water, microwave irradiation time, and microwave irradiation power were set as independence variables. And the extraction yield and total flavonoids were measured. The optimal extraction conditions using CCD-RSM were the volume ratio of ethanol/ultrapure water = 56.3 vol.%, the microwave irradiation time = 6.1 min, and the microwave irradiation power = 574.6 W. We could also obtain expected results of yield = 17.2 wt.% and total flavonoids = 44.7 ㎍ QE/mL dw under the optimum conditions. The comprehensive satisfaction degree of this formula was 0.8562. The P-value was calculated for the yield of 0.037 and the total flavonoids content of 0.002. The average error from actual experiments established for the verification of conclusions was lower than 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimization of extraction process.

DC Resistivity Survey Design for Deep Magma in Mt. Baekdu Using Distributed Acquisition System (백두산 심부 마그마 탐사를 위한 분산계측 시스템을 이용한 전기비저항탐사 설계)

  • Lee, Hyosun;Jung, Hyun-Key;Cho, Sung-Ho;Kim, Yesol;Lee, Youn Soo;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.177-187
    • /
    • 2019
  • Several volcanic activities have continued in Mt. Baekdu since the Millennium eruption, and these phenomena have increased the need for volcanic activity surveillance. Various geophysical approaches are needed to obtain the depth and size of magma chamber that lie several kilometers below the surface. We examined the applicability of direct-current resistivity survey in this study. In order to explore the deep magma chamber of Mt. Baekdu, which has a spatial limitation due to the borderline, a large-scale survey with a length of tens of kilometers should be conducted. This type of survey requires a distributed measurement system and optimized exploration designs. Therefore, we propose survey designs taking advantage of our developed distributed acquisition system and analyze the applicability using numerical simulation. We confirmed that our designs that use single survey line with offline transmitting points show comparable results to the conventional 3D survey. It is expected that our research result can contribute to the deep geophysical exploration in Mt. Baekdu.

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

Comparative Study on Phenolic Compounds of Cheorwon Onion by Phosphite Treatment (아인산염 처리에 따른 철원양파의 페놀화합물 비교 연구)

  • Kim, Y.B.;Lee, H.J.;Park, C.H.;Kim, D.H.;Koo, H.J.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The aim of this study was to evaluate the change of phenolic compounds after phosphite treatment on Cheorwon onion. Onion is a perennial plant belonging to the lily family. It is native to Persia of Southwest Asia. It is widely cultivated in the temperate regions of the world. Onion is a good name for the 'Okchong' to drop blood cholesterol and cardiovascular blood flow to increase the prevention of adult diseases. Cheorwon area is inland, but it has high continental climate due to its high altitude. Therefore it is said that the onion cultivated in this region has higher sugar content and higher taste than onion grown in the southern region. Phosphorus components are particularly important ingredients for promoting muscle development. However, if the phosphoric acid content of the soil part is maintained to a large extent until the harvest, the competition of the nutrients tends to cause decay of the root part. Therefore, it is important to improve the quality and shelf life of onion by inducing nutrient balance by applying foliar fertilization method on the reducing phosphorus at harvest time. In this study, acidity was controlled by diluting phosphorous acid(H3PO3) and potassium hydroxide(KOH), followed by leaf surface treatment with phosphite on onion. In this study, the concentration of phosphite was diluted to 500, 1,000, 1,500ppm and sprayed three times over the onion leaves in May 2018 using an atomizer and harvested at the end of June, and the phenolic compounds were analyzed by HPLC. As a result, the content of quercetin, one of the important substances in onion, was phosphite 500ppm(179.70㎍/g), 1,000(150.27), 1,500(105.95). The contents of caffeic acid, p-coumaric acid, ferulic acid, rutin, kaempferol, and sugar content were higher in the treatments than in the control. Therefore, the phosphite does not have a great influence on the growth, but it may play a role as a method of achieving balance with nitrogen in the rainy season by supplying the role of the material catalyst and the water soluble phosphoric acid and the potassium in the influence of the material change.

Phase evaluation of Fe/Co pigments coated porcelain by rietveld refinement (리트벨트 정밀화법에 의한 Fe/Co 안료가 코팅된 도자기의 상분석)

  • Nam-Heun Kim;Kyung-Nam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.174-180
    • /
    • 2023
  • Porcelain (white ware, celadon ware) coated with a ferrous sulfate and ferrous/cobalt sulfate was sintered at 1250℃. The specimens were investigated by HR-XRD, FE-SEM, HR-EDS, and UV-vis spectrophotometer. Through X-ray rietveld quantitative analysis, quartz and mullite were found to be the main phases for white ware, and mullite and plagioclase were found to be the main phases for celadon ware. When the pigment of ferrous/cobalt sulfate was applied, were identified as an andradite phase for celadon ware and a spinel phase for the white ware, and the amorphous phase, respectively. The L* value, which was the brightness of the specimen, was 72.01, 60.92 for white ware and celadon ware, respectively. The ferrous and ferrous/cobalt pigment coated porcelain had L* values of 44.89, 52.27 for white ware and celadon ware, respectively; with a* values of 2.12, 1.40, an d at b* values of 1.45 and 13.79. As for the color of the specimens, it was found that the L* value was greatly affected by the white ware, and the b* value differed greatly depending on the clay. It was thought to be closely related to the production of the secondary phase such as Fe2O3 and andradite phase produced in the surface layer.

Meat Quality and Storage Characteristics of Finishing Pigs by Feeding Stevia and Charcoal (스테비아와 숯이 급여된 비육돈의 육질 및 저장특성)

  • Lee, Jae-Joon;Park, Sung-Hyun;Jung, Dong-Soon;Choi, Yang-Il;Choi, Jung-Soek
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.296-303
    • /
    • 2011
  • This study was conducted to determine the effects of stevia (Stevia rebaudiana Bertoni) and charcoal supplementation on meat quality traits in finishing pigs. A total of 420 pigs (LYD) were randomly allocated into seven treatments with three replications. The dietary treatments were T1 (control, basal diet), T2 (basal diet+0.3% stevia), T3 (basal diet+0.6% stevia), T4 (basal diet+0.3% charcoal), T5 (basal diet+0.6% charcoal), T6 (basal diet+0.3% stevia+0.3% charcoal), and T7 (basal diet+0.6% stevia+0.6% charcoal). Pigs were slaughtered conventionally on each marketing day and chilled overnigth. At 24 h postmortem, the Longissimus muscle from left side between the 6th and 14th rib was removed for the meat quality traits. The T6 group showed a higher pH, water holding capacity (p<0.05), and lower drip loss (p<0.05) than those in the T1 group. The T6 group showed lower (p<0.05) $L^*$ (lightness) and $b^*$ (yellowness) values and higher $a^*$ (redness) color value than those in the T1 group, resulting in a redder surface meat color. In the subjective evaluation, marbling and color scores improved in the T6 group compared to those in the other treatments. In the panel test, the T6 group tended to have higher tenderness and juiciness scores than those in the T1 group. In the storage characteristics, all treatments showed similar 2-thiobarbituric acid and volatile basic nitrogen values as well as total microbial counts during 7 d of cold storage. As a result, dietary supplementation with 0.3% stevia and 0.3% charcoal showed the highest meat quality traits and storage characteristics in finishing pigs.