• Title/Summary/Keyword: 3-D solid element

Search Result 190, Processing Time 0.027 seconds

Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR (다성분계 현무암질 비정질 규산염의 원자 구조에 대한 고상핵자기 공명 분광분석연구)

  • Park, Sun-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.343-352
    • /
    • 2009
  • High-resolution Solid-state NMR provides element specific and quantitative information and also resolves, otherwise overlapping atomic configurations in multi-component non-crystalline silicates. Here we report the preliminary results on the effect of composition on the structure of CMAS (CaO-MgO-$Al_2O_3-SiO_2$) silicate glasses, as a model system for basaltic magmas, using the high-resolution 1D and 2D solid-state NMR. The $^{27}Al$ MAS NMR spectra for the CMAS silicate glasses show that four-coordinated Al is predominant, demonstrating that $Al^{3+}$ is network forming cation. The peak position moves toward lower frequency about 4.7 ppm with increasing $X_{MgO}$ due to an increase in $Q^4$(4Si) fraction with increasing Si content, indicating that Al are surrounded only by bridging oxygen. $^{17}O$ MAS NMR spectra for $CaAl_2SiO_6$ and $CaMgSi_2O_6$ glasses qualitatively suggest that NBO fraction in the former is smaller than that in $CaMgSi_2O_6$ glasses. As $^{17}O$ 3QMAS NMR spectrum of model quaternary aluminosilicate glass resolved distinct bridging and non-bridging oxygen environments, atomic structure for natural magmas can also be potentially probed using high-resolution 3QMAS NMR.

Effect of Dy addition on $Zn_2SiO_4:Tb$ green Phosphor ($Zn_2SiO_4:Tb$ 녹색 형광체의 Dy 첨가 효과)

  • Im, Won-Bin;Kang, Jong-Hyuk;Lee, Dong-Chin;Jeon, Duk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.968-971
    • /
    • 2003
  • Due to a low efficiency of phosphor with large Stoke shift in Vacuum Ultra Violet (VUV) excitation environment, new PDP phosphors which can be excited in UV excitation environment need to be developed. In this study, $Zn_2SiO_4:Tb$ phosphor was synthesized by solid-state reaction method at $1300^{\circ}C$ with varying Tb concentration, and its cross relaxation effect was observed by Photoluminescence (PL) measurement. In order to decrease $^5D_3{\to}7F_j$ transition with blue emission in $Zn_2SiO_4:Tb$ phosphor, Dy, co-activator element, was added to $Zn_2SiO_4:Tb$ phosphor. In 254nm excitation environment, broad-emission peak was observed around 524nm, green emission.

  • PDF

Numerical Analysis on the Behavior of Carbon Fiber Grid Reinforced Concrete Members (탄소섬유그리드 보강 콘크리트 부재의 거동에 대한 수치해석적 연구)

  • 김학군;정재호;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.143-148
    • /
    • 1999
  • In this paper we present the results of an analytical investigation on the existing concrete structures which are reinforced with carbon fiber grid. The carbon fiber grid and polymer mortar are utilized in the reinforcement of concrete column, beam, and tunnel lining. The physical and mechanical properties of the carbon fiber grid and polymer mortar were obtained experimentally and then used in the analytical investigation. In the analysis concrete structures are modeled with 3-D solid finite elements and the carbon fiber grid is modeled with space frame elements. Through the investigation reinforcing effect of carbon fiber grid on the existing concrete structures is confirmed.

  • PDF

study on conceptional design of car-body structure for Korean tilting train (한국형 틸팅차량 차체구조물의 개발을 위한 개념설계)

  • 문형석;유원희;최성규;엄기영;한성호;이수길
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.303-311
    • /
    • 2002
  • A first evaluation of the possibilities of high speed trains in conventional railway in Korea have been investigated. The radius of curvature was considered the major problem with high-speed trains in Korea. If KNR(Korea National railway) likes to increase the speed, is then whether KNR shall construct straigthen the track or develop a train that can reduce travel time in curves The research concerns structural design of train car-body is to reduce heavy stress concentration. Using 3D solid modeling, Finite Element analysis and shape optimization combined with powerful postprocessing, graphical display and animation to achieve complete and accurate design and performance will be carried out further project Main purpose of this project is to provide korean tilting train car body's conceptional design. Based on first year research results, the design of car-body will be performed by train manufacture.

  • PDF

Surgical Evaluation of Endodontic Treatments for Apicoectomy According to Alveolar Bone Resorption Types (치조골흡수 유형에 따른 치근단 절제술의 수술적 평가에 관한 연구)

  • Hong, Hyoung Taek;Chun, Heoung Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.471-474
    • /
    • 2013
  • The surgical evaluation of the apicoectomy with various types of alveolar bone resorption was conducted in current study. The apicoectomy is the common and important treatment in endodontics. Finite element analysis was used for evaluation. The 3D solid model of the maxillary central incisor was reconstructed using CT images of a mature Asian female. Loading and boundary conditions were simulated in the normal mastication of maxillary central incisor. For evaluation of apicoectomy, lingual, labial and entire alveolar bone resorption models were developed. In the results, lingual alveolar bone resorption did not significantly influence stress distribution pattern of root dentin and labial alveolar bone had an important role for supporting structural stability in tooth system.

Three-dimensional finite element analysis of the stress distribution and displacement in different fixation methods of bilateral sagittal split ramus osteotomy

  • Yun, Kyoung In;Cho, Young-Gyu;Lee, Jong-Min;Park, Yoon-Hee;Park, Myung-Kyun;Park, Je Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.271-275
    • /
    • 2012
  • Objectives: This study evaluated a range of fixation methods to determine which is best for the postoperative stabilization of a mandibular osteotomy using three-dimensional finite element analysis of the stress distribution on the plate, screw and surrounding bone and displacement of the lower incisors. Materials and Methods: The model was generated using the synthetic skull scan data, and the surface model was changed to a solid model using software. Bilateral sagittal split ramus osteotomy was performed using the program, and 8 different types of fixation methods were evaluated. A vertical load of 10 N was applied to the occlusal surface of the first molar. Results: In the case of bicortical screws, von-Mises stress on the screws and screw hole and deflection of the lower central incisor were minimal in type 2 (inverted L pattern with 3 bicortical repositioning screws). In the case of plates, von-Mises stress was minimal in type 8 (fixation 5 mm above the inferior border of the mandible with 1 metal plate and 4 monocortical screws), and deflection of the lower central incisor was minimal in types 6 (fixation 5 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws) and 7 (fixation 12 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws). Conclusion: Types 2 and 6 fixation methods provide better stability than the others.

Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model (3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화)

  • Kim, Won Cheol;Chung, Tae Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.309-314
    • /
    • 2014
  • The structural layout of mechanical and civil structures is commonly obtained using conventional methods. For example, the shape of structures such as electric transmission towers and offshore substructures can be generated systematically. However, with rapid advancements in computer graphic technology, advanced structural analyses and optimum design technologies have been implemented. In this study, the structural shape of a jacket substructure for an offshore wind turbine is investigated using a topology optimization technique. The structure is subjected to multiple loads that are intended to simulate the loading conditions during actual operation. The optimization objective function is defined as one that ensures compliance of the structure under the given boundary conditions. Optimization is carried out with constraints on the natural frequency in addition to the volume constraint. The result of a first step model provides quick insights into the optimum layout for the second step structure. Subsequently, a 3D model in the form of the frustum of a quadrilateral pyramid is developed through topology optimization.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.