Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR

다성분계 현무암질 비정질 규산염의 원자 구조에 대한 고상핵자기 공명 분광분석연구

  • Park, Sun-Young (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 박선영 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Published : 2009.12.30

Abstract

High-resolution Solid-state NMR provides element specific and quantitative information and also resolves, otherwise overlapping atomic configurations in multi-component non-crystalline silicates. Here we report the preliminary results on the effect of composition on the structure of CMAS (CaO-MgO-$Al_2O_3-SiO_2$) silicate glasses, as a model system for basaltic magmas, using the high-resolution 1D and 2D solid-state NMR. The $^{27}Al$ MAS NMR spectra for the CMAS silicate glasses show that four-coordinated Al is predominant, demonstrating that $Al^{3+}$ is network forming cation. The peak position moves toward lower frequency about 4.7 ppm with increasing $X_{MgO}$ due to an increase in $Q^4$(4Si) fraction with increasing Si content, indicating that Al are surrounded only by bridging oxygen. $^{17}O$ MAS NMR spectra for $CaAl_2SiO_6$ and $CaMgSi_2O_6$ glasses qualitatively suggest that NBO fraction in the former is smaller than that in $CaMgSi_2O_6$ glasses. As $^{17}O$ 3QMAS NMR spectrum of model quaternary aluminosilicate glass resolved distinct bridging and non-bridging oxygen environments, atomic structure for natural magmas can also be potentially probed using high-resolution 3QMAS NMR.

특정 원자 중심의 정보를 제공해주는 고분해능 고상핵자기 공명 분광분석(NMR)은 현무암질 마그마를 포함한 대부분의 자연계의 다성분계 규산염 용융체의 원자 구조 분석에 적합하다. 본 연구에서는 일차원과 이차원 고상 NMR을 이용하여 현무암질 마그마의 모델 시스템인 CMAS (CaO-MgO-$Al_2O_3-SiO_2$) 비정질 규산염의 조성에 따른 원자 구조의 변화를 규명하였다. $^{27}Al$ MAS NMR 실험 결과 모든 조성에대해 $^{[4]}Al$ 피크가 지배적으로 나타나고 이는 $Al^{3+}$이 네트워크 형성 이온으로 작용한다는 것을 지시한다. $X_{MgO}$가 증가함에 따라 피크 위치가 음의 방향으로 4.7 ppm 이동하며 이는 조성에서 Si의 상대적인 양이 증가할수록 $Q^4$(4Si)가 증가하는 것을 의미하고 이를 통해 Al 주변의 산소가 모두 연결 산소(BO, bridging oxygen)임이 확인되었다. $^{17}O$ NMR 실험 결과 비정질 $CaMgSi_2O_6$에 있는 비연결 산소의 상대적 양이 $CaAl_2SiO_6$에 있는 비연결 산소보다 정성적으로 많은 것이 확인되었다. 모델 사성분계 비정질 알루미노규산염에 대한 $^{17}O$ 3QMAS NMR 실험결과 Al-O-Al, Al-O-Si, Si-O-Si의 연결 산소와 {Ca, Mg}-NBO의 원자 환경이 구별되며 이 실험 결과는 자연계에서 나타나는 다양한 조성의 다성분계 비정질에 대해서도 이차원 3QMAS NMR 실험을 이용하여 원자구조를 규명할 수 있는 가능성을 제시한다.

Keywords

References

  1. 이성근 (2005) 2차원 고상 핵자기 공명기를 이용한 비정질 규산염의 고압구조 몇 무질서도에 대하여, 한국광물학회지, 18, 45-52
  2. Allwardt, J.R., Lee, S.K., and Stebbins, J.F. (2003) Bonding preferences of non-bridging O atoms: Evidence from O-17 MAS and 3QMAS NMR on calcium aluminate and low-silica Ca-aluminosilicate glasses. Am. Miner., 88, 949-954 https://doi.org/10.2138/am-2003-0701
  3. Barbieri, L., Corradi, A.B., Lancellotti, I., Leonelli, C., and Montorsi, M. (2004) Experimental and computer simulation study of glasses belonging to diopsideanorthite system. J. Non-Cry. Sol., 345, 724-729 https://doi.org/10.1016/j.jnoncrysol.2004.08.190
  4. Del Gaudio, P. and Behrens, H. (2009) An experimental study on the pressure dependence of viscosity in silicate melts. J. Chem. Phys., 131
  5. Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J. Am. Ceram. Soc., 117, 5367-5368 https://doi.org/10.1021/ja00124a023
  6. Gasparik, T. (1984) Experimentally determined stability of clinopyroxene + garnet + corundum in the system CaO-MgO-$Al_2O_3-SiO_2$. Am. Miner., 69, 1025-1035
  7. Giordano, D., Russell, J.K., and Dingwell, D.B. (2008) Viscosity of magmatic liquids: A model. Earth. Planet. Sci. Lett., 271, 123-134 https://doi.org/10.1016/j.epsl.2008.03.038
  8. Herzberg, C. (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444(7119), 605-609 https://doi.org/10.1038/nature05254
  9. Hofmeister, A.M., Whittington, A.G., and Pertermann, M. (2009) Transport properties of high albite crystals, near-endmember feldspar and pyroxene glasses, and their melts to high temperature. Contrib. Min. Pet., 158, 381-400 https://doi.org/10.1007/s00410-009-0388-3
  10. Iwamori, H. (1993) A model for disequilibrium mantle melting incorporating melt transport by porous and channel flows. Nature, 366, 734-737 https://doi.org/10.1038/366734a0
  11. Kushiro, I. (2001) Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annu. Rev. Earth Planet. Sci., 29, 71-107 https://doi.org/10.1146/annurev.earth.29.1.71
  12. Langmuir C.H., Klein E.M., and Plank T. (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Morgan J.P., Blackman, D.K., Sinton J. (eds.) Mantle Flow and Melt Generation at Mid-Ocean Ridges, Geophys. Monogr. Ser., Vol.71, AGU, 183-280
  13. Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. Am. Miner., 84, 937-945 https://doi.org/10.2138/am-1999-5-630
  14. Lee, S.K. and Stebbins, J.F. (2000) The structure of aluminosilicate glasses: High-resolution O-17 and Al-27 MAS and 3QMAS. J. Phys. Chem. B., 104, 4091-4100 https://doi.org/10.1021/jp994273w
  15. Lee, S.K. and Stebbins, J.F. (2002) Extent of intermixing among framework units in silicate glasses and melts. Geochim. Cosmochim. Acta, 66, 303-309 https://doi.org/10.1016/S0016-7037(01)00775-X
  16. Lee, S.K., Cody, G.D., and Mysen, B.O. (2005) Structure and the extent of disorder in quaternary (Ca-Mg and Ca-Na) aluminosilicate glasses and melts. Am. Miner., 90, 1393-1401 https://doi.org/10.2138/am.2005.1843
  17. Lee, S.K. and Stebbins, J.F. (2006) Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations. Geochim. Cosmochim. Acta, 70, 4275-4286 https://doi.org/10.1016/j.gca.2006.06.1550
  18. Lee, S.K. and Sung, S. (2008) The effect of networkmodifying cations on the structure and disorder in peralkaline Ca-Na aluminosilicate glasses: O-17 3QMAS NMR study. Chem. Geol., 256, 326-333 https://doi.org/10.1016/j.chemgeo.2008.07.019
  19. Lee, S.K., Deschamps, M., Hiet, J., Massiot, D., and Park, S.Y. (2009a) Connectivity and Proximity between Quadrupolar Nuclides in Oxide Glasses: Insights from through-Bond and through-Space Correlations in Solid-State NMR. J. Phys. Chem. B., 113, 5162-5167 https://doi.org/10.1021/jp810667e
  20. Lee, S.K., Lee, S.B., Park, S.Y., Yi, Y.S., and Ahn, C.W. (2009b) Structure of Amorphous Aluminum Oxide. Phys. Rev. Lett., 103
  21. Levitt, M.H. (2001) Spin dynamics : Basic of Nuclear Magnetic Resonance (NMR), John Wiley & Sons, LTD, Chichester, 207p
  22. Mysen, B.O. and Richet, P. (2005) Silicate Glasses and Melts: Properties and Structure Developments in Geochemistry 10, Elsevier
  23. Navrotsky, A., Zimmermann, H.D., and Hervig, R.L. (1983) Thermochemical study of glasses in the system $CaMgSi_2O_6-CaAl_2SiO_6$. Geochim. Cosmochim. Acta, 47, 1535-1538 https://doi.org/10.1016/0016-7037(83)90314-9
  24. Neuville, D.R. and Richet, P. (1991) Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta, 55, 1011-1019 https://doi.org/10.1016/0016-7037(91)90159-3
  25. Presnall, D.C., Gudfinnsson, G.H., and Walter, M.J. (2002) Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim. Cosmochim. Acta, 66, 2073-2090 https://doi.org/10.1016/S0016-7037(02)00890-6
  26. Richet, P., Robie, R.A., and Hemingway, B.S. (1993) Entropy and structure of silicate-glasses and melts. Geochim. Cosmochim. Acta, 57, 2751-2766 https://doi.org/10.1016/0016-7037(93)90388-D
  27. Stebbins, J.F. (1995) Dynamics and structure of silicate and oxide melts: Nuclear magnetic resonance studies. In: Stebbins, J.F., McMillan P.F. and Dingwell D.B. (eds.), Structure, Dynamics and Properties of Silicate Melts, Vol. 32, Mineral. Soc. America, 191-246
  28. Stebbins, J.F. and Xu, Z. (1997) NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature, 390, 60-62 https://doi.org/10.1038/36312
  29. Urbain, G., Bottinga, Y., and Richet, P. (1982) Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta, 46, 1061-1072 https://doi.org/10.1016/0016-7037(82)90059-X
  30. Winter J.D. (2001) An Introduction to Igneous and Metamorphic Petrology, Prentice Hall, New Jersey, 248p
  31. Webb, S. and Knoche, R. (1995) The glass-transition, structural relaxation and shear viscosity of silicate melts, La Petite Pierre, 165-183