• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.037 seconds

Technical Review of Target Volume Delineation on the Posterior Fossa Tumor : An Optimal Head and Neck Position (후두와 종양의 방사선치료 시 표적용적의 결정을 위한 적절한 치료자세 연구)

  • Yoon Sang Min;Lee Sang-wook;Ahn Seung Do;Kim Jong Hoon;YE Byong Yong;Ra Young Shin;Kim Tae Hyung;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.94-99
    • /
    • 2003
  • Purpose : To explore a 3D conformal radiotherapy technique for a posterior fossa boost, and the potential advantages of a prone position for such radiotherapy. Materials and Methods :A CT simulator and 3D conformal radiotherapy Planning system was used for the posterior fossa boost treatment on a 13-year-old medulloblastoma patient. He was placed In the prone position and Immobilized with an aquaplast mask and immobilization mold. CT scans were obtained of the brain from the top of the skull to the lower neck, with IV contrast enhancement. The target volume and normal structures were delineated on each slice, with treatment planning peformed using non-coplanar conformal beams. Results : The CT scans, and treatment In the prone position, were peformed successfully. In the prone position, the definition of the target volume was made easier due to the well enhanced tentorium, In audition, the posterior fossa was located anteriorly, and with the greater choice of beam arrangements, more accurate treatment planning was possible as the primary beams were not obstructed by the treatment table. Conclusion : .A posterior fossa boost, in the prone position, Is feasible in cooperating patients, but further evaluation is needed to define the optimal and most comfortable treatment positions.

Development of a Pattern and Visual Image for a One-Piece Dress using a 3D Virtual Clothing System (3D 가상 착의 시스템을 활용한 원피스 드레스의 원형 개발 및 시각적 이미지 연구)

  • Uh, Mi-Kyung
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.3
    • /
    • pp.597-611
    • /
    • 2011
  • The purpose of this study is to propose a design method for one-piece dress patterns with high body fitness through an appearance evaluation of one-piece dress patterns with the application of the 3D Virtual Clothing System known as i-designer. Measures consisted of an optical illusion effect in visual imagery and mutual influence according to a change in the length and princess line, in a silhouette of a one-piece dress. The data was assessed by a t-test and a multi-way ANOVA and factor analysis using SPSS 17.0. The results were as follows; The design of the study pattern was done by modifying the ease of the bust circumference, ease of the abdominal circumference, ease of the hip circumference, the position of the side seam line, and the appearance of horizontality in the hem line, which received a low evaluation in appearance evaluations of a one-piece dress pattern. As a result of analyzing the visual image according to a change in the length and princess line, in the form of a silhouette of a one-piece dress, four factors were selected; the whole-body optical illusion factor, the upper-body optical illusion factor, the bust optical illusion factor, and the lower-body optical illusion factor. As a result of analyzing the effect of the interaction in the visual image according to the design variables, the influence of the main effect was found to be great in each factor. In the upper-body optical illusion factor, a significant difference was not noted in the two-way interaction between the length and the princess line. However, the influence on three-way interaction among the length, princess line, and silhouette was significant.

Three-dimensional soft tissue analysis for the evaluation of facial asymmetry in normal occlusion individuals

  • Hwang, Hyeon-Shik;Yuan, Donghui;Jeong, Kweon-Heui;Uhm, Gi-Soo;Cho, Jin-Hyoung;Yoon, Sook-Ja
    • The korean journal of orthodontics
    • /
    • v.42 no.2
    • /
    • pp.56-63
    • /
    • 2012
  • Objective: To identify the right and left difference of the facial soft tissue landmarks three-dimensionally from the subjects of normal occlusion individuals. Materials and Methods: Cone-beam computed tomography (CT) scans were obtained in 48 normal occlusion adults (24 men, 24 women), and reconstructed into 3-dimensional (3D) models by using a 3D image soft ware. 3D position of 27 soft tissue landmarks, 9 midline and 9 pairs of bilateral landmarks, were identified in 3D coordination system, and their right and left differences were calculated and analyzed. Results: The right and left difference values derived from the study ranged from 0.6 to 4.6 mm indicating a high variability according to the landmarks. In general, the values showed a tendency to increase according to the lower and lateral positioning of the landmarks in the face. Overall differences were determined not only by transverse differences but also by sagittal and vertical differences, indicating that 3D evaluation would be essential in the facial soft tissue analysis. Conclusions: Means and standard deviations of the right and left difference of facial soft tissue landmarks derived from this study can be used as the diagnostic standard values for the evaluation of facial asymmetry.

3D Holographic contents work and Projection Act on Spectator Approach (관객접근에 의해 행동하는 3D 홀로그래픽 콘텐츠 저작 및 프로젝션)

  • Lim, Sooyeon;Kim, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.597-604
    • /
    • 2012
  • In order to actualize the third dimension form, hologram is coming to attention because it has no restriction on viewing position and is capable of natural visual expression. Although hologram technology is the best method to embody 3D image without glasses, it is not commercialized due to several technological problems. Currently used hologram technology in concerts or exhibitions are images flashed on a 2-dimensional transparent screen by HD projectors which is similar to hologram technology, not truly same. In this research, we make 3D contents for Holographic projection and use these contents to present art that can interact with spectators. As a result of the exhibition, attendance showed satisfaction on inspection form, allowing spectators to move around the screen and view it both sides; moreover, they were enterprising to interact with the videos played according to their movements. Therefore, we are able to implement a sensible and spatio-temporal artwork along with interesting space production and represent a intimate and interactive space with the public.

Women's Pant Pattern Design According to the Style Using 3D Body Scan Data (3차원 스캔 데이터를 활용한 스타일별 여성 팬츠 패턴 연구)

  • Yoon, Mi Kyung;Nam, Yun Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.1
    • /
    • pp.97-113
    • /
    • 2016
  • This study develops pant patterns using body shape, measurement and shell mesh data to decide optimal women's pants according to styles with excellent size, fit and shape for different individuals and silhouettes. Standard landmarks, lines, triangles and structures were set on a 3D scanned lower body shell to represent women in their twenties and flattened as a 2D pattern. Patterns were created and analyzed according to culotte, formal, slacks and tight type considering crotch shape, location of the crotch point, and adjusting waist darts. Flattened patterns were rotated to compare existing methods. The crease lines were then set through the hip protrusion point and compared. The main factor of the pant pattern were extracted, total rise, crotch depth, crotch width, angle of center line, shape of the center line curve, the thigh width, the amount of waist dart, and crease line position. With going tight style from the culotte, the fits are closer to the figure with minimized thigh circumference, the dart amount decreases, the crotch depth increases, the crotch extensions were shorter, and the angle of the center back increased. The total rise is U shape for culotte and is closer to V shape as the silhouette tightens. T-test of appearance evaluation of the developed pant pattern were conducted after analyzing measurements and shapes of each styles. The results of the developed patterns were superior to existing patterns in accordance to hip line between body and pants as well as appearance evaluation. We found systematic mechanisms among pattern factors that create various pant silhouettes. Evidence on classification of the silhouettes of traditional types of pants were explained objectively through the process of playing out 3D forms.

Seamless Viewing Control by User Movement Between Pyramid Sections in Desktop 3D Hologram Pyramid (데스크톱 3D 홀로그램 피라미드에서 피라미드 단면 사이 사용자 이동에 따른 끊김 없는(seamless viewing control) 뷰 생성)

  • Hwang, Sun-Ju;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • The hologram pyramid is an application of floating holograms, allowing the observer to see three-dimensional holograms from various angles without wearing wearable devices. Due to the low cost and ease of manufacturing, it has been used in a wide variety of fields as diverse as education, prototyping, showcase, and etc. But, when the observer looks at the hologram from the place where each side of the hologram pyramid is connected, the hologram looks cut and distorted. Also, the observer can see the only hologram of angles viewed head-on from each side. In this paper, we propose a method of generating a hologram image corresponding to the observer's gaze angle by tracking the observer's position and conducting reverse distortion. It provide a hologram of the angle viewed by the observer without cutting and distortion. In addition, the existing method and the proposed method were applied and compared in the hologram pyramid.

Arrangement for Auditory Display of Object's Position in Augmented Reality (증강현실에서 대상 위치 정보의 청각적 제시를 위한 공간 배열)

  • Lee, Ju-Hwan;Kim, Moon-Ju;Han, Kwang-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.161-168
    • /
    • 2006
  • 본 연구는 공간적 정보의 청각적 제시 가능성을 확인하기 위해 머리전달함수(head-related transfer function: HRTF)를 통해 생성된 3D 사운드를 가상공간상 대상 위치의 직각형태(orthogonal pattern), 혹은 대각형태(diagonal pattern)의 조합으로 배열하여 투시장치(See-Through HMD)로 증강현실을 경험하고 있는 사용자 과제수행의 정확성을 측정하였다. 본 연구에서 실시한 실험들의 결과를 종합하면, 3D 사운드로 대상의 위치 정보를 제시할 때는 사용자로부터의 방향은 직각으로 위치시키는 정보 배열이 정확성을 확보할 수 있고, 또한 가상적 깊이를 이용하여 정보를 배열하는 것도 그 깊이를 구분할 수 있으나 정확성이 떨어짐을 확인하였다. 특히 보다 현실적인 과제 상황에서의 수행을 비교하기 위해 일차과제(primary task)를 하는 동안 제시된 청각자극 조건에서 이런 정확성의 차이가 마찬가지로 나타났다. 이런 결과를 통해 3D 사운드로 대상의 위치와 같은 공간적 정보를 제시 가능한 최적의 배열 형태를 제안하는데, 이는 어떤 패턴으로 정보를 구조화하여 제시하느냐에 따라 청각적 위치 정보 제시의 성공 여부가 결정된다는 것을 의미한다.

  • PDF

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

Real-Time Shadow Generation Using Image-Based Rendering Technique (영상기반 렌더링 기법을 이용한 실시간 그림자 생성)

  • Lee, Jung-Yeon;Im, In-Seong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • Shadows are important elements in producing a realistic image. In rendering. generation of the exact shape and position of shadow is crucial in providing the user with visual cues on the scene. While the shadow map technique quickly generates a shadow for the scene wherein objects and light sources are fixed. it gets slow down as they start to move. In this paper. we apply an image-based rendering technique to generate shadows in real-time using graphics hardware. Due to the heavy requirement of storage for a shadow map repository. we use a wavelet-based compression scheme for effective compression. Our method will be efficiently used in generating realistic scenes in many real-time applications such as 3D games and virtual reality systems.

  • PDF

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF