• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.035 seconds

A Study on Vision Sensor-based Measurement of Die Location for Its Remodeling (금형 개조 용접시 시각 센서를 이용한 대상물 위치 파악에 관한 연구)

  • Kim, Jitae;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.141-146
    • /
    • 2000
  • We introduce the algorithms of 3-D position estimation using a laser sensor for automatic die remodeling. First, a vision sensor based on the optical triangulation was used to collect the range data of die surface. Second, line vector equations were constructed by the measured range data, and an analytic algorithm was proposed for recognizing the die location with these vector equations. This algorithm could make the transformation matrix without any specific corresponding points. To ascertain this algorithm, folded SUS plate was measured by the laser vision sensor attached to a 3-axis cartesian manipulator and the transformation matrix was calculated.

  • PDF

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

3-D Recognition of Position using Epipolar Line and Matching from Stereo Image (두개의 영상으로부터 Epipolar Line과 Matching을 이용한 3차원 물체의 위치 인식)

  • Cho, Seok-Je;Park, Kil-Houm;Lee, Kwang-Ho;Kim, Young-Mo;Ha, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1441-1444
    • /
    • 1987
  • Extraction of dept.h information from stereo image uses the matching process between them and this requires a lot of computational time. In this paper, a matching using the feature points on the epipolar line is presented to save the computations. Feature points are obtained in both image and correlated each other. With the coordinates of the matched feature points and camera geometry, the position and depth informations are identified.

  • PDF

Development of Hovering AUV Test-bed for Underwater Explorations and Operations

  • Byun, Seung-Woo;Choi, Hyeung-Sik;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • This paper describes the design and control of a hovering AUV test-bed and analyzes the dynamic performance of the vehicle using simulation programs. The main purpose of this vehicle is to carry out fundamental tests of its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general appearance of an ROV for underwater operations, and its dimensions are $0.75m{\times}0.5m{\times}0.5m$. It has four 450-W thrusters for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring the water depth and a magnetic compass for measuring its heading angle. The navigation of the vehicle is controlled by an onboard Pentium III-class computer, which runs with the help of the Windows XP operating system. This provides an appropriate environment for developing the various algorithms needed for developing and advancing a hovering AUV.

Three-Dimensional Measurement of Moving Surface Using Circular Dynamic Stereo

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.3-101
    • /
    • 2001
  • By setting a refractor with a certain angle against the optical axis of the CCD camera lens, the image of a measuring point recorded on the image plane is displaced by the corresponding amounts related to the distance between the camera and the measuring point. When the refractor that keeps the angle against the optical axis is rotated physically at high speed during the exposure of the camera, the image of a measuring point draws an annular streak. Since the size of the annular streak is inversely proportional to the distance between the camera and the measuring point, the 3D position of the measuring point can be obtained by processing the streak. In this paper, for one of the applications of our system, the measurement of a moving surface is introduced. In order to measure the moving surface, multi laser spots are projected on the surface of object. Each position of ...

  • PDF

Effect of Link Stiffness on Error of Cubic Parallel Manipulator in 3D Workspace (3차원 작업영역에서 링크 강성이 육면형 병렬 기구 오차에 미치는 영향)

  • 박성철;임승룡;김현수;최우천;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.397-401
    • /
    • 1997
  • An error analysis is very important for a precision machine to estimate its performances. This study deals with error of a new parallel device, cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the cubic parallel device vary depending on the stiffness of the manipulator. The stiffness of each link depends on the directions of the link and actuation force. In this paper, the stiffness of the manipulator is calculated by ARAQUS and the position and orlentation errors are predicted within a given workspace. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing parallel devices.

  • PDF

A Study on the PWM Control of Hydraulic Equipment Using High Speed On-Off Valve (고속전자밸브를 사용한 유압장치의 PWM 제어에 관한 연구)

  • ;Wennmacher,G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.868-876
    • /
    • 1995
  • This study deals with a position control of an electro-hydraulic servo system which consist of cylinder and high speed on-off valves operated by microcomputer. The merits of PWM control of hydraulic equipment are the robustness of the high spee on-off valve, its low price and the direct control without D/A converter. In the PWM control of high speed on-off valve, the time lag and switching time existing between the input and output signals of valve are considered as demerit points. To get analytical results, the effects of these demerits have to be clarified in detail. The object of this study is to propose a mathematical model for the behavior of high speed on-off valve and to get analytical results of this system. The dynamic characteristics of this system is examined by digital computer simulation analytically and compared with experimental results to varify the proposed mathematical model.

3D Particle Image Detection by Using Color Encoded Illumination System

  • Kawahashi M.;Hirahara H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.100-107
    • /
    • 2001
  • A simple new technique of particle depth position measurement, which can be applied for three-dimensional velocity measurement of fluid flows, is proposed. Two color illumination system that intensity is encoded as a function of z-coordinate is introduced. A calibration procedure is described and a profile of small sphere is detected by using the present method as preliminary test. Then, this method is applied to three-dimensional velocity field measurement of simple flow fields seeded with tracer particles. The motion of the particles is recorded by color 3CCD camera. The particle position in the image plane is read directly from the recorded image and the depth of each particle is measured by calculation of the intensity ratio of encoded two color illumination. Therefore three-dimensional velocity components are reconstructed. Although the result includes to some extent error, the feasibility of the present technique for three-dimensional velocity measurement was confirmed.

  • PDF

An Interesting Story of Four Gamma-ray Bright AGNs by the iMOGABA

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2018
  • A Korean VLBI Network key science program, the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA) program continues to reveal the nature of the gamma-ray flares in active galactic nuclei (AGNs). Here in this presentation, we would like to introduce an interesting story about four gamma-ray bright AGNs - BL Lac, 1633+382, 3C 84, and M87 - based on the recent results of the iMGOABA. The results will include a) a sad story of an 'orphan' gamma-ray flare from BL Lac, b) a position offset of 40 pc for a gamma-ray flaring site from the radio regions in 1633+382, c) a position alignment of a gamma-ray flaring site with a central engine region in 3C 84, and d) a flat millimeter spectrum of a core in M87 revealed by the iMOGABA.

  • PDF

Impact of Feature Positions on Focal Length Estimation of Self-Calibration (Self-calibration의 초점 거리 추정에서 특징점 위치의 영향)

  • Hong Yoo-Jung;Lee Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.400-406
    • /
    • 2006
  • Knowledge of camera parameters, such as position, orientation and focal length, is essential to 3D information recovery or virtual object insertion. This paper analyzes the error sensitivity of focal length due to position error of feature points which are employed for self-calibration. We verify the dependency of the focal length on the distance from the principal point to feature points with simulations, and propose a criterion for feature selection to reduce the error sensitivity.