• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.05 seconds

An effect of time gating threshold (TGT) on a delivered dose in internal organ with movement due to respiration (호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold(TGT)의 효과)

  • Kim, Yon-Lae;Chung, Jin-Bum;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.132-135
    • /
    • 2004
  • In this study, we investigated the effect of threshold on a delivered dose in organ with internal motion by respiration. With mathematic model for 3D dose calculation reported by Lujan et al., we had calculated the position of organ as a function of time in previous study. This result presented that the variation of organ is within 2 mm from initial exhale position to the organ position during operating 1 s. Gating threshold, in this study, is determined to the moving region of target during 1s at a primary position of exhale. This period of gating threshold is 50% of the duty cycle in a half breathing cycle which is period from the top position of exhalation to the bottom position of inhalation. Radiation fields were then delivered under three conditions; 1) existent of moving target in the region of threshold(1sec, 1.5sec), 2) existent of moving target out of the region of threshold, 3) non-moving target. The non-moving target delivery represents a dose different induced due to internal organ motion.

  • PDF

Real-Time 3D Volume Deformation and Visualization by Integrating NeRF, PBD, and Parallel Resampling (NeRF, PBD 및 병렬 리샘플링을 결합한 실시간 3D 볼륨 변형체 시각화)

  • Sangmin Kwon;Sojin Jeon;Juni Park;Dasol Kim;Heewon Kye
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • Research combining deep learning-based models and physical simulations is making important advances in the medical field. This extracts the necessary information from medical image data and enables fast and accurate prediction of deformation of the skeleton and soft tissue based on physical laws. This study proposes a system that integrates Neural Radiance Fields (NeRF), Position-Based Dynamics (PBD), and Parallel Resampling to generate 3D volume data, and deform and visualize them in real-time. NeRF uses 2D images and camera coordinates to produce high-resolution 3D volume data, while PBD enables real-time deformation and interaction through physics-based simulation. Parallel Resampling improves rendering efficiency by dividing the volume into tetrahedral meshes and utilizing GPU parallel processing. This system renders the deformed volume data using ray casting, leveraging GPU parallel processing for fast real-time visualization. Experimental results show that this system can generate and deform 3D data without expensive equipment, demonstrating potential applications in engineering, education, and medicine.

A Numerical Simulation of Flows in an Engine Cooling Passage (엔진 냉각유로 내의 유동에 관한 수치해석)

  • 허남건;윤성영;조원국;김광호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.32-40
    • /
    • 1993
  • Flow fields in model engine cooling passages are studied numerically by using TURBO-3D program, a finite volume based 3-D turbulent flow program adopting a general body fitted coordinate system. The effects of exit position on mass flow rate at each gasket hole are examined for a model cooling passage in order to understand the flow distribution inside the water jacket. The results of the present study can be applied to the design of high performance, high reliability engine.

  • PDF

Object Model ing from Depth Information Using Z-gradient (3차원 정보로 부터 Z축의 기울기를 이용한 물체의 조형.)

  • Kim, T.Y.;Cho, D.U.;Choi, B.U.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1069-1072
    • /
    • 1987
  • In this paper, we drive useful data from 3-D depth information as input using discontinuity boundary or clustering. And using magnitude and direction of z-gradient we classify the data into adaptable primitive types through intrinsic and stochastical processing. After these processing information is reconstructed for forming data base. And make relationship and standard view position for matching.

  • PDF

Development of the Motion Characteristics Analysis System of Robots Using Laser

  • Ahn, Chang-Hyun;Kim, Gyu-Ro;Kim, Jin-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.6-61
    • /
    • 2001
  • In this paper, we propose a method to analyze measured data from 3D Laser tracking system and to enhance precision performance of a Cartesian robot. Position data are obtained over the stroke of a Cartesian robot with variable speeds. The measured data is need to model errors with several different sources. In general, the error is a function of part accuracy, assembly accuracy, temperature, and control etc. After the sources of errors are identified, they are used to enhance precision performance. The proposed method is more complete than others because we use very accurate 3D Laser tracking system.

  • PDF

Opto-Digital Implementation for Convergence Control in the 3D Robot System (3D 로봇비전 시스템에서 주시각 제어를 위한 광-디지털적 구현)

  • Cho, Do-Hyeoun;Ko, Jung-Hwan;Lee, Jong-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1003-1004
    • /
    • 2006
  • In this paper we extract the position value of the tracking object using the hierarchical optic-digital algorithm and to control the main visual angle and Pan/Tilt. And then we propose the optic-digital stereo object tracking system for adaptive extracting the moving-target.

  • PDF

Distortion Removal and False Positive Filtering for Camera-based Object Position Estimation (카메라 기반 객체의 위치인식을 위한 왜곡제거 및 오검출 필터링 기법)

  • Sil Jin;Jimin Song;Jiho Choi;Yongsik Jin;Jae Jin Jeong;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Robotic arms have been widely utilized in various labor-intensive industries such as manufacturing, agriculture, and food services, contributing to increasing productivity. In the development of industrial robotic arms, camera sensors have many advantages due to their cost-effectiveness and small sizes. However, estimating object positions is a challenging problem, and it critically affects to the robustness of object manipulation functions. This paper proposes a method for estimating the 3D positions of objects, and it is applied to a pick-and-place task. A deep learning model is utilized to detect 2D bounding boxes in the image plane, and the pinhole camera model is employed to compute the object positions. To improve the robustness of measuring the 3D positions of objects, we analyze the effect of lens distortion and introduce a false positive filtering process. Experiments were conducted on a real-world scenario for moving medicine bottles by using a camera-based manipulator. Experimental results demonstrated that the distortion removal and false positive filtering are effective to improve the position estimation precision and the manipulation success rate.

Recent Studies of Laser Metal 3D Deposition with Wire Feeding (와이어 송급 레이저 금속 3차원 적층 연구동향)

  • Kam, Dong-Hyuck;Kim, Young-Min;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Recent developments of Laser metal 3D deposition with wire feeding are reviewed which provide an alternative to powder feeding method. The wire feeding direction, angle and position as well as laser power, wire feeding rate, and deposition speed are found to be key parameters to make quality deposition with high throughput. When compared with the powder feed, the wire feed shows higher material efficiency, higher deposition rate, and smoother surface. Large elongated columnar grains which have epitaxial growth across deposit layers are observed in deposit cross sections. The growth direction is parallel to the thermal gradient during the deposit process. Tensile properties are found to be dependent on the direction due to the anisotropic deposit property. A real-time feedback control is demonstrated to be effective to improve the deposition stability.

Coupling of ent-Cyclic Peroxide and Ircinol A, Two Biologically Active Natural Marine Products

  • Lim, Chi-Won;Kim, Yeun-Kye;Jang, Mi-Soon;Park, Jin-Il;Park, Hee-Yeun
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.175-178
    • /
    • 2006
  • An acidic ent-cyclic peroxide was isolated from a sponge, Plakotis sp., and showed activity against leishmaniasis and pathogenic fungi. To improve the activity of this compound, we coupled the acidic ent-cyclic at the C1 position of ircinol A. Compound 3 exhibited significant activity against Leishmania mexican a and fungi with $IC_{50}$ values of 0.7 and $0.3-34{\mu}g/mL$, respectively. The yield of compound 3 was 98%.

A Dosimetric Evaluation of Large Pendulous Breast Irradiation in Prone Position (Large Pendulous Breast 환자의 방사선 치료에 있어서 엎드린 자세의 유용성 평가)

  • Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • Purpose: To evaluate dosimetry results of three different techniques for whole breast irradiation after conservative surgery of large pendulous breast patient. Materials and Methods: Planning computed tomography (CT) scans for three techniques were performed on a GE Hi-speed advantage CT scanner in the supine (SP), supine with breast supporting Device (SD) and prone position on a custom prone mattress (PP). Computed tomography images were acquired at 5 mm thickness. The clinical target volumes (CTV), ipsilateral lung and heart were delineated to evaluate the dose statistic, and all techniques were planned with the tangential photon beams (Pinnacle$^3$, Philips Medical System, USA). The prescribed dose was 50 Gy delivered in 25 fractions. To evaluate the dose coverage for CTV, we analysed percent volume of CTV receiving minimum of 95%, 100%, 105%, and 110% of prescription dose ($V_{95}$, $V_{100}$, $V_{105}$, and $V_{110}$) and minimal dose covering 95% ($D_{95}$) of CTV. The dosimetric comparison for heart and ipsilateral lung was analysed using the minimal dose covering 5% of each organs ($D_5$) and the volume that received >18 Gy for the heart and >20 Gy for the ipsilateral lung. Results: Target volume coverage ($V_{95}$ and $V_{100}$) was not significantly different for all technique. The V105 was lower for PP (1.2% vs. 4.4% for SP, 11.1% for SD). Minimal dose covering 95% ($D_{95}$) of target was 47.5 Gy, 47.7 Gy and 48 Gy for SP, SD and PP. The volume of ipsilateral lung received >20 Gy was 21.7%, 11.6% and 4.9% for SP, SD and PP. The volume of heart received >18 Gy was 17.0%, 16.1% and 9.8% for SP, SD and PP. Conclusion: Prone positioning of patient for large pendulous breast irradiation enables improving dose uniformity with minimal heart and lung doses.

  • PDF