• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.034 seconds

Optimum Allocation of Sound Absorbing Materials in a Vibroacoustic System using Response Surface Methodology (반응표면법을 이용한 진동-음향 연성계의 흡음재 최적배치)

  • Hong, Do-Kwan;Baek, Hwang-Soon;Woo, Byung-Chul;Ahn, Chan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1196-1203
    • /
    • 2011
  • Statistical optimum methodology of table of orthogonal array, ANOM, ANOVA and RSM are applied to formulate optimum allocation design with design variables. It can be minimized average SPL of control volume, the objective function in closed system by optimal allocated positions of absorbing material. Structural natural frequency and acoustic natural frequency of cavity are analyzed by FEM and BEM in the closed system. Using BEM, average SPL of specific control volume is calculated according to the condition before using absorbing material and after using it. It is shown that noise is reduced by $5.02dB_{RMS}$ by absorbing material located at optimal position and minimum $1.83dB_{RMS}$ and maximum $3.47dB_{RMS}$ by the table of orthogonal array.

Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating (고주파 유도 단일패스 선상가열 유기 후판 성형 기술)

  • Lee, K.S.;Eom, D.H.;Kim, C.W.;Pyun, S.Y.;Son, D.H.;Gong, G.Y.;Kim, B.M.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

A Study on Automotive LED Business Strategy Based on IP-R&D : Focused on Flip-Chip CSP (Chip-Scale Packaging) (IP-R&D를 통한 자동차분야 LED사업전략에 관한 연구 : Flip-Chip을 채용한 CSP (Chip-Scale Packaging) 기술을 중심으로)

  • Ryu, Chang Han;Choi, Yong Kyu;Suh, Min Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 2015
  • LED (Light Emitting Diode) lighting is gaining more and more market penetration as one of the global warming countermeasures. LED is the next generation of fusion source composed of epi/chip/packaging of semiconductor process technology and optical/information/communication technology. LED has been applied to the existing industry areas, for example, automobiles, TVs, smartphones, laptops, refrigerators and street lamps. Therefore, LED makers have been striving to achieve the leading position in the global competition through development of core source technologies even before the promotion and adoption of LED technology as the next generation growth engine with eco-friendly characteristics. However, there has been a point of view on the cost compared to conventional lighting as a large obstacle to market penetration of LED. Therefore, companies are developing a Chip-Scale Packaging (CSP) LED technology to improve performance and reduce manufacturing costs. In this study, we perform patent analysis associated with Flip-Chip CSP LED and flow chart for promising technology forecasting. Based on our analysis, we select key patents and key patent players to derive the business strategy for the business success of Flip-Chip CSP PKG LED products.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.

A Multi-View Images Interleaving for Slanted Parallax Barrier based Display Device (사선형 시차 장벽 기반 입체 디스플레이 장치를 위한 다중 시점 영상 생성)

  • Jung, Kyung-Boo;Park, Jong-Il;Choi, Byung-Uk
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.491-502
    • /
    • 2012
  • Flat panel-based parallax barrier or lenticular based 3D display devices that have been developed recently are designed to feel depth. In order to see a three-dimensional(3D) image by the display device, a multi-view image displayed on the flat panel must be regenerated from images of multi-views using a subsampling method. Previous subsampling methods are focused on reducing crosstalk. In this paper, we focus on a misalignment that is occurred on manufacture process of slanted parallax barrier based autostereoscopic display device. Therefore, we propose a interleaving method that considers tilt of slanted parallax barrier, aperture size, and distance between an autostereoscopic display device and a viewer to see a 3D image regardless of a viewer position.

Quadratic Kalman Filter Object Tracking with Moving Pictures (영상 기반의 이차 칼만 필터를 이용한 객체 추적)

  • Park, Sun-Bae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • In this paper, we propose a novel quadratic Kalman filter based object tracking algorithm using moving pictures. Quadratic Kalman filter, which is introduced recently, has not yet been applied to the problem of 3-dimensional (3-D) object tracking. Since the mapping of a position in 2-D moving pictures into a 3-D world involves non-linear transformation, appropriate algorithm must be chosen for object tracking. In this situation, the quadratic Kalman filter can achieve better accuracy than extended Kalman filter. Under the same conditions, we compare extended Kalman filter, unscented Kalman filter and sequential importance resampling particle filter together with the proposed scheme. In conculsion, the proposed scheme decreases the divergence rate by half compared with the scheme based on extended Kalman filter and improves the accuracy by about 1% in comparison with the one based on unscented Kalman filter.

Is Computerized Tomography Angiographic Surveillance Valuable for Prevention of Tracheoinnominate Artery Fistula, a Life-Threatening Complication after Tracheostomy?

  • Sung, Jae-Hoon;Kim, Il-Sup;Yang, Seung-Ho;Hong, Jae-Taek;Son, Byung-Chul;Lee, Sang-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • Objective : The aim of this study was to evaluate the utility of volume-rendered helical computerized tomography (CT) angiography focusing tracheostomy tube and innominate artery for prevention of tracheoinnominate artery fistula. Methods : The authors retrospectively analyzed 22 patients with tracheostomy who had checked CT angiography. To evaluate the relationship between tracheostomy tube and innominate artery, we divided into three categories. First proximal tube position based on cervical vertebra, named "tracheostomy tube departure level (TTDL)". Second, distal tube position and course of innominate artery, named "tracheostomy tube-innominate artery configuration (TTIC)". Third, the gap between the tube and innominate artery, named "tracheostomy tube to innominate artery gap (TTIG)". The TTDL/TTIC and TTIG are based on 3-dimensional (3D) reconstruction around tracheostomy and enhanced axial slices of upper chest, respectively. Results : First, mean TTDL was $6.8{\pm}0.6$. Five cases (23%) were lower than C7 vertebra. Second, TTIC were remote to innominate artery (2 cases; 9.1 %), matched with it (14 cases; 63.6%) or crossed it (6 cases; 27.3%). Only 9% of cases were definitely free from innominate artery injury. Third, average TTIG was $4.3{\pm}4.6$ mm. Surprisingly, in 6 cases (27.3%), innominate artery, trachea wall and tracheostomy tube were tightly attached all together, thus have much higher probability of erosion. Conclusion : If low TTDL, match or crossing type TTIC with reverse-L shaped innominate artery, small trachea and thin TTIG are accompanied all together, we may seriously consider early plugging and tube removal.

Semi-automatic Camera Calibration Using Quaternions (쿼터니언을 이용한 반자동 카메라 캘리브레이션)

  • Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The camera is a key element in image-based three-dimensional positioning, and camera calibration, which properly determines the internal characteristics of such a camera, is a necessary process that must be preceded in order to determine the three-dimensional coordinates of the object. In this study, a new methodology was proposed to determine interior orientation parameters of a camera semi-automatically without being influenced by size and shape of checkerboard for camera calibration. The proposed method consists of exterior orientation parameters estimation using quaternion, recognition of calibration target, and interior orientation parameter determination through bundle block adjustment. After determining the interior orientation parameters using the chessboard calibration target, the three-dimensional position of the small 3D model was determined. In addition, the horizontal and vertical position errors were about ${\pm}0.006m$ and ${\pm}0.007m$, respectively, through the accuracy evaluation using the checkpoints.