• Title/Summary/Keyword: 3-D pose

Search Result 340, Processing Time 0.026 seconds

3D Multiple Objects Detection and Tracking on Accurate Depth Information for Pose Recognition (자세인식을 위한 정확한 깊이정보에서의 3차원 다중 객체검출 및 추적)

  • Lee, Jae-Won;Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.963-976
    • /
    • 2012
  • 'Gesture' except for voice is the most intuitive means of communication. Thus, many researches on how to control computer using gesture are in progress. User detection and tracking in these studies is one of the most important processes. Conventional 2D object detection and tracking methods are sensitive to changes in the environment or lights, and a mix of 2D and 3D information methods has the disadvantage of a lot of computational complexity. In addition, using conventional 3D information methods can not segment similar depth object. In this paper, we propose object detection and tracking method using Depth Projection Map that is the cumulative value of the depth and motion information. Simulation results show that our method is robust to changes in lighting or environment, and has faster operation speed, and can work well for detection and tracking of similar depth objects.

Image-based Localization Recognition System for Indoor Autonomous Navigation (실내 자율 비행을 위한 영상 기반의 위치 인식 시스템)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • Recently, the localization recognition system research has been studied using various sensors according to increased interest in autonomous navigation flight. In case of indoor environment which cannot support GPS information, we have to look for another way to recognize current position. The Image-based localization recognition system has been interested although there are lots of way to know current pose. In this paper, we explain the localization recognition system based on mark and implementation of autonomous navigation flight. In order to apply to real environment which cannot support marks, localization based on real-time 3D map building is discussed.

A study on the digitalization of 3D Pen (3D펜의 디지털화에 대한 연구)

  • Kim, Jong-Young;Jeon, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.583-590
    • /
    • 2021
  • This paper is a study on the digitization of an analog 3D pen. The term digital implies features such as homeostasis, transformability, combinability, reproducibility, and convenience of storage. One device that produces a combination of these digital characteristics is a 3D printer, but its industrial use is limited due to low productivity and limitations with materials and physical characteristics. In particular, improvements are required to use 3D printers, such as better user accessibility owing to expertise and skills in modeling software and printers. Complementing this fact is the 3D pen, which is excellent in portability and ease of use, but has a limitation in that it cannot be digitized. Therefore, in order to secure a digitalization capability and ease of use, and to secure the safety of printing materials that pose controversial hazards during the printing process, research problems and alternatives have been derived by combining food, and digitization was demonstrated with a newly developed 3D pen. In order to digitize the 3D pen, a sensor in a structured device detects the motion of an analog 3D pen, and this motion is converted into 3D data (X-Y-Z coordinate values) through a spatial analysis algorithm. To prove this method, the similarity was confirmed by visualization using MeshLab version 1.3.4. It is expected that this food pen can be used in youth education and senior healthcare programs in the future.

Video Augmentation of Virtual Object by Uncalibrated 3D Reconstruction from Video Frames (비디오 영상에서의 비보정 3차원 좌표 복원을 통한 가상 객체의 비디오 합성)

  • Park Jong-Seung;Sung Mee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.421-433
    • /
    • 2006
  • This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.

  • PDF

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.

Optimal Trajectory Modeling of Humanoid Robot for Argentina Tango Walking

  • Ahn, Doo-Sung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • To implement Argentina tango dancer-like walking of the humanoid robot, a new trajectory generation scheme based on particle swarm optimization of the blending polynomial is presented. Firstly, the characteristics of Argentina tango walking are derived from observation of tango dance. Secondly, these are reflected in walking pose conditions and cost functions of particle swarm optimization to determine the coefficients of blending polynomial. For the stability of biped walking, zero moment point and reference trajectory of swing foot are also included in cost function. Thirdly, after tango walking cycle is divided into 3 stages with 2 postures, optimal trajectories of ankles, knees and hip of lower body, which include 6 sagittal and 4 coronal angles, are derived in consequence of optimization. Finally, the feasibility of the proposed scheme is validated by simulating biped walking of humanoid robot with derived trajectories under the 3D Simscape environment.

An Occlusion Robust Observation Model for 3D Human Pose Tracking (3차원 인체 포즈 추적을 위한 가려짐에 강인한 관측치 모델)

  • Cho, Nam-Gyu;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.390-392
    • /
    • 2011
  • 가려진 상태에 있는 인체 구성요소에 대한 관측치 모델은 영상에서 인체 구성요소가 차지하고 있는 화소들에 대한 정확한 평가를 해야 하는 저수준에서의 문제와, 권투 동작과 같이 역동적으로 변화하는 인체 구성요소 간의 가려짐 관계에 대한 문맥적인 상황을 같이 고려해야 하는 어려움을 갖고 있다. 본 논문에서는 자체 가려짐이 발생한 상황에서도 강인하게 인체 포즈 추적을 하기 위한 가려짐에 강인한 관측치 모델을 제안한다. 포즈 추적 성능을 비교평가 할 수 있는 HumanEva 데이터 셋을 이용하여 제안하는 관측치 모델의 강인함을 확인하였으며, 기존 방법과의 성능 비교에서도 우수한 추적 성능을 보였다.

Interactive Shape Analysis of the Hippocampus in a Virtual Environment (가상 환경에서의 해마 모델에 대한 대화식 형상 분석☆)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.165-181
    • /
    • 2009
  • This paper presents an effective representation scheme for the shape analysis of the hippocampal structure and a stereoscopic-haptic environment to enhance sense of realism. The parametric model and the 3D skeleton represent various types of hippocampal shapes and they are stored in the Octree data structure. So they can be used for the interactive shape analysis. And the 3D skeleton-based pose normalization allows us to align a position and an orientation of the 3D hippocampal models constructed from multimodal medical imaging data. We also have trained Support Vector Machine (SVM) for classifying between the normal controls and epileptic patients. Results suggest that the presented representation scheme provides various level of shape representation and the SVM can be a useful classifier in analyzing the shape differences between two groups. A stereoscopic-haptic virtual environment combining an auto-stereoscopic display with a force-feedback (or haptic) device takes an advantage of 3D applications for medicine because it improves space and depth perception.

  • PDF

Probabilistic Object Recognition in a Sequence of 3D Images (연속된 3차원 영상에서의 통계적 물체인식)

  • Jang Dae-Sik;Rhee Yang-Won;Sheng Guo-Rui
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.241-248
    • /
    • 2006
  • The recognition of a relatively big and rarely movable object. such as refrigerator and air conditioner, etc. is necessary because these objects can be crucial global stable features of Simultaneous Localization and Map building(SLAM) in the indoor environment. In this paper. we propose a novel method to recognize these big objects using a sequence of 3D scenes. The particles representing an object to be recognized are scattered to the environment and then the probability of each particles is calculated by the matching test with 3D lines of the environment. Based on the probability and degree of convergence of particles, we can recognize the object in the environment and the pose of object is also estimated. The experimental results show the feasibility of incremental object recognition based on particle filtering and the application to SLAM

  • PDF

A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera (단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구)

  • Jung, Dae-Seop;Choi, Jong-Hoon;Jang, Chul-Woong;Jang, Mun-Suk;Kong, Jung-Shik;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF