• Title/Summary/Keyword: 3-D map

Search Result 1,478, Processing Time 0.037 seconds

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

Automation technology for analyzing 3D point cloud data of construction sites

  • Park, Suyeul;Kim, Younggun;Choi, Yungjun;Kim, Seok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1100-1105
    • /
    • 2022
  • Denoising, registering, and detecting changes of 3D digital map are generally conducted by skilled technicians, which leads to inefficiency and the intervention of individual judgment. The manual post-processing for analyzing 3D point cloud data of construction sites requires a long time and sufficient resources. This study develops automation technology for analyzing 3D point cloud data for construction sites. Scanned data are automatically denoised, and the denoised data are stored in a specific storage. The stored data set is automatically registrated when the data set to be registrated is prepared. In addition, regions with non-homogeneous densities will be converted into homogeneous data. The change detection function is developed to automatically analyze the degree of terrain change occurred between time series data.

  • PDF

Depth Map Refinement using Segment Plane Estimation (세그멘트 평면 추정을 이용한 깊이 지도 개선)

  • Jung, Woo-Kyung;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.286-287
    • /
    • 2020
  • Depth map is the most common way of expressing 3D space in immersive media. In this paper, we propose a post-processing method to improve the quality of depth map. In proposed method, a depth map is divided into segments, and the plane of each segment estimated using RANSAC. In order to increase the accuracy of the RANSAC process, we apply matching reliability of each pixel in depth map as a weighting factor.

  • PDF

Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

  • Kim, Cheong Ghil;Choi, Yong Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.728-741
    • /
    • 2015
  • Stereo vision has become an important technical issue in the field of 3D imaging, machine vision, robotics, image analysis, and so on. The depth map extraction from stereo video is a key technology of stereoscopic 3D video requiring stereo correspondence algorithms. This is the matching process of the similarity measure for each disparity value, followed by an aggregation and optimization step. Since it requires a lot of computational power, there are significant speed-performance advantages when exploiting parallel processing available on processors. In this situation, multi-core CPU may allow many parallel programming technologies to be realized in users computing devices. This paper proposes parallel implementations for calculating disparity map using a shared memory programming and exploiting the streaming SIMD extension technology. By doing so, we can take advantage both of the hardware and software features of multi-core processor. For the performance evaluation, we implemented a parallel SAD algorithm with OpenMP and SSE2. Their processing speeds are compared with non parallel version on stereoscopic streaming video. The experimental results show that both technologies have a significant effect on the performance and achieve great improvements on processing speed.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

A Study on High-Precision Digital Map Generation Using Ground LiDAR (지상 LiDAR를 이용한 고정밀 수치지도 생성에 관한 연구)

  • Choi, Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • The slope of the road in the forest area has a characteristic of steep slope, so natural disasters such as slope collapse occur. The slope displacement observation technique according to landslide is being studied as a method to observe a wide area and a method to observe a small area. This is a study on high-precision digital map generation using ground LiDAR. It is possible to create a high - precision digital map by minimizing the US side using the 3D LiDAR in the steep slope area where the GPS and Total Station measurement are difficult in the maintenance of the danger slope area. It is difficult to objectively evaluate whether the contour lines generated by LiDAR are correct and it is considered necessary to construct a test bed for this purpose. Based on this study, if terrain changes such as landslides occur in the future, it will be useful for measuring slope displacement.

Profile Management System of Material Piles by Dynamic Range Finding (동적 Range 검출에 의한 원료 Pile 형상 관리 시스템)

  • 안현식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.333-336
    • /
    • 2000
  • In this paper, a profile management system consisting of global and local range finders is presented for the automat ion of material pile handling. A global range finder detects range data of the front part of the piles of material and a profile map is obtained from a 3D profile detection algorithm. A local range finder attached on the side of the arm of the reclaimer detects range data with the handling function dynamically, and a local profile patch is acquired from the range data A yard profile map manager constructs a map by using the 3D profile of the global range finder and revises the map by replacing it with the local profile patch obtained Iron the local range finder. The developed vision system was applied to a simulator and the results of test show that it is appropriate to use for automating the material handling.

  • PDF

Implementation of Wheelchair Robot Applying SLAM and Global Path Planning Methods Suitable for Indoor Autonomous Driving (실내 자율주행에 적합한 SLAM과 전역경로생성 방법을 적용한 휠체어로봇 구현)

  • Baek, Su-Jin;Kim, A-Hyeon;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • This paper presents how to create a 3D map and solve problems related to generating a global path planning for navigation. Map creation and localization were performed using the RTAB-Map package to create a 3D map of the environment. In addition, when the target point is within the obstacle space, the problem of not generating a global path was solved using the asr_navfn package. The performance of the proposed system is validated through experiments with a wheelchair-type robot.

Stereoscopic Effect of 3D images according to the Quality of the Depth Map and the Change in the Depth of a Subject (깊이맵의 상세도와 주피사체의 깊이 변화에 따른 3D 이미지의 입체효과)

  • Lee, Won-Jae;Choi, Yoo-Joo;Lee, Ju-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.29-42
    • /
    • 2013
  • In this paper, we analyze the effect of the depth perception, volume perception and visual discomfort according to the change of the quality of the depth image and the depth of the major object. For the analysis, a 2D image was converted to eighteen 3D images using depth images generated based on the different depth position of a major object and background, which were represented in three detail levels. The subjective test was carried out using eighteen 3D images so that the degrees of the depth perception, volume perception and visual discomfort recognized by the subjects were investigated according to the change in the depth position of the major object and the quality of depth map. The absolute depth position of a major object and the relative depth difference between background and the major object were adjusted in three levels, respectively. The details of the depth map was also represented in three levels. Experimental results showed that the quality of the depth image differently affected the depth perception, volume perception and visual discomfort according to the absolute and relative depth position of the major object. In the case of the cardboard depth image, it severely damaged the volume perception regardless of the depth position of the major object. Especially, the depth perception was also more severely deteriorated by the cardboard depth image as the major object was located inside the screen than outside the screen. Furthermore, the subjects did not felt the difference of the depth perception, volume perception and visual comport from the 3D images generated by the detail depth map and by the rough depth map. As a result, it was analyzed that the excessively detail depth map was not necessary for enhancement of the stereoscopic perception in the 2D-to-3D conversion.

  • PDF

Generation of the Building Layer of Large-scale Digital Map Using Multi-Oblique Images (다방향 경사영상을 이용한 대축척 수치지도 건물레이어 제작)

  • Song, Jai-Youl;Lee, Byoung-Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.621-629
    • /
    • 2011
  • According to the development of technologies for generating the 3D spatial information, the needs for producing and updating the precise 3D objects with LoD 4 level are increased. On the other hand, the needs for real-time updating of 2D digital maps are expanded, based on the execution of various GIS projects. These 2D informations can be extracted from precisely constructed 3D spatial information, to do this the feasibility studies on extraction of the 2D information from the 3D spatial information is needed. In this study, 3D objects are modeled using multi-oblique images, and the objects are stereo-plotted using digital airborne images, as well. Then the two data sets are compared and analyzed. The results show that the accuracy assessments fulfill the 1/1,000 digital map accuracy standard of regulations for photogrametric surveying of National Geographic Information Institute, but the shapes and the areas of building objects are different between two data sets because of the portrayal standards. Consequently, researchers can conclude that it is possible to generate the building layer of large scale topographic map using multi-oblique images, but additional researches is needed to resolve the problems on differences of the portrayal standards.