• Title/Summary/Keyword: 3-D imaging

Search Result 1,507, Processing Time 0.032 seconds

Assessment of Posterior Globe Flattening: Two-Dimensional versus Three-Dimensional T2-Weighted Imaging

  • Ann, Jun Hyung;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2015
  • Purpose: To compare the frequency of posterior globe flattening between two-dimensional T2-weighted imaging (2D T2WI) and three-dimensional (3D T2WI). Materials and Methods: Sixty-nine patients (31 female; mean age, 44.4 years) who had undergone both 5-mm axial T2WI and sagittal 3D 1-mm isovoxel T2WI of the whole brain for evaluation of various diseases (headache [n = 30], large hemorrhage [n = 19], large tumor or leptomeningeal tumor spread [n = 15], large infarct [n = 3], and bacterial meningitis [n = 2]) were used in this study. Two radiologists independently reviewed both sets of images at separate sessions. Axial T2WI and multi-planar imaging of 3D T2WI were visually assessed for the presence of globe flattening. The optic nerve sheath diameter (ONSD) was measured at a location 4 mm posterior to each globe on oblique coronal imaging reformatted from 3D T2WI. Results: There were significantly more globes showing posterior flattening on 3D T2WI (105/138 [76.1%]) than on 2D T2WI (27/138 [19.6%], P = 0.001). Inter-observer agreement was excellent for both 2D T2WI and 3D T2WI (Cohen's kappa = 0.928 and 0.962, respectively). Intra-class correlation coefficient for the ONSD was almost perfect (Cohen's kappa = 0.839). The globes with posterior flattening had significantly larger ONSD than those without on both 2D and 3D T2WI (P < 0.001; $6.14mm{\pm}0.44$ vs. $5.74mm{\pm}0.44$ on 2D T2WI; $5.90mm{\pm}0.47$ vs. $5.56mm{\pm}0.34$ on 3D T2WI). Optic nerve protrusion was significantly more frequent on reformatted 1-mm 3D T2WI than on 5-mm 2D T2WI (8 out of 138 globes on 3D T2WI versus one on 2D T2WI; P = 0.018). Conclusion: Posterior globe flattening is more frequently observed on 3D T2WI than on 2D T2WI in patients suspected of having increased intracranial pressure. The globes with posterior flattening have significantly larger ONSD than those without.

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.43 no.5
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

In vivo Evaluation of Flow Estimation Methods for 3D Color Doppler Imaging

  • Yoo, Yang-Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2010
  • In 3D ultrasound color Doppler imaging (CDI), 8-16 pulse transmissions (ensembles) per each scanline are used for effective clutter rejection and flow estimation, but it yields a low volume acquisition rate. In this paper, we have evaluated three flow estimation methods: autoregression (AR), eigendecomposition (ED), and autocorrelation combined with adaptive clutter rejection (AC-ACR) for a small ensemble size (E=4). The performance of AR, ED and AC-ACR methods was compared using 2D and 3D in vivo data acquired under different clutter conditions (common carotid artery, kidney and liver). To evaluate the effectiveness of three methods, receiver operating characteristic (ROC) curves were generated. For 2D kidney in vivo data, the AC-ACR method outperforms the AR and ED methods in terms of the area under the ROC curve (AUC) (0.852 vs. 0.793 and 0.813, respectively). Similarly, the AC-ACR method shows higher AUC values for 2D liver in vivo data compared to the AR and ED methods (0.855 vs. 0.807 and 0.823, respectively). For the common carotid artery data, the AR provides higher AUC values, but it suffers from biased estimates. For 3D in vivo data acquired from a kidney transplant patient, the AC-ACR with E=4 provides an AUC value of 0.799. These in vivo experiment results indicate that the AC-ACR method can provide more robust flow estimates compared to the AR and ED methods with a small ensemble size.

Novel Technology for View Angle Performance Measurement

  • Rykowski, Ronald;Lee, Jong-Seo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1358-1361
    • /
    • 2008
  • Several different techniques currently exist for measuring display view angle performance. These include conoscopes, goniometric systems, and, most recently introduced to the market, instruments based on Imaging Sphere technology. This paper will compare measurement accuracy and speed of these various methodologies with different FPD types and even 3-D displays.

  • PDF

An improved 2D/3D convertible integral imaging with two parallel display devices

  • Choi, Hee-Jin;Park, Jae-Hyeung;Kim, Joo-Hwan;Cho, Seong-Woo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.46-49
    • /
    • 2005
  • In this paper, a novel 2D/3D convertible display system based on integral imaging is proposed. Combining two liquid crystal display panels with integral imaging, it is possible to convert the display between two-dimensional mode and three-dimensional mode without mechanical movement. The proposed method is proven by preliminary experiments.

  • PDF

The CGH in the Electro-holographic system using the Bragg type AOSLM (Bragg type 음향광변조기를 채택한 Electro-holographic system에서의 computer generated Fresnel hologram의 구현)

  • ;;;;Tru Thi Van Anh
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.142-143
    • /
    • 2002
  • KIST에서는 Pulsed Laser를 사용하여 3차원 image를 재생할 수 있는 Electro-Holographic System을 만들어 CGH이미지를 구현하였다. CGH 이미지를 구현하기 위한 SLM (Spatial Light Modulator)으로 TeO$_2$ 결정의 Shear Mode 에서 동작하는 Bragg type의 다채널 AOSLM(Acousto-optic Spatial Light Modulator)이 사용되었다. 이 Bragg type 다채널 AOSLM에서는 광원이 특정 Bragg 각도로 입사하였을 때 다른 고위 차수는 억압되고 +나 -의 첫번째 차수의 회절 빔만이 형성된다. (중략)

  • PDF

Computational generation method of elemental images using a Kinect sensor in 3D depth-priority integral imaging (3D 깊이우선 집적영상 디스플레이에서의 키넥트 센서를 이용한 컴퓨터적인 요소영상 생성방법)

  • Ryu, Tae-Kyung;Oh, Yongseok;Jeong, Shin-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.167-174
    • /
    • 2016
  • In this paper, we propose a generation of 2D elemental images for 3D objects using Kinect in 3D depth-priority integral imaging (DPII) display. First, we analyze a principle to pickup elemental images based on ray optics. Based on our analysis, elemental images are generated with both RGB image and depth image recorded from Kinect. We reconstruct 3D images from the elemental images with the computational integral imaging reconstruction technique and then compare various perspective images. To show the usefulness of the proposed method, we carried out the preliminary experiments. The experimental results reveal that our method can provide correct 3D images with full parallax.

Viewing-angle enhanced Integral 3D Imaging along full directions without mechanical movement (기계적 움직임 없이 수직.수평 방향으로 향상된 시야각을 갖는 Integral 3D Imaging)

  • 정성용;박재형;최희진;민성욱;이병호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.240-241
    • /
    • 2003
  • 여러 3차원 디스플레이 기술 중 integral imaging은 안경 및 기타 보조기구를 착용하지 않은 관측자에게 시야각 내에서 연속적인 시점, 수직수평 패럴랙스, 실시간 full color 동영상의 재생을 지원한다는 장점을 갖고 있어 최근 많은 관심을 받으며 이에 대한 연구가 활발히 진행되고 있다. Integral imaging에 대한 연구는 주로 시야각을 향상시키거나 재생되는 입체 영상의 해상도를 향상시키는 방향으로 이루어지고 있다. (중략)

  • PDF

Real-Time 3-D Ultrasound Imaging Method using a 2-D Curved Array (이차원 곡면 어레이를 이용한 실시간 3차원 초음파 영상화 기법)

  • 김강식;한호산;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.351-364
    • /
    • 2002
  • Conventional 3D ultrasound imaging using mechanical ID arrays suffers from poor elevation resolution due to the limited depth-of-focus (DOF). On the other hand, 3D imaging systems using 2D phased arrays have a large number of active channels and hence require a very expensive and bulky beamforming hardware. To overcome these limitations, a new real-time volumetric imaging method using curved 2-D arrays is presented, in which a small subaperture, consisting of 256 elements, moves across the array surface to scan a volume of interest. For this purpose, a 2-D curved array is designed which consists of 90$\times$46 elements with 1.5λ inter-element spacing and has the same view angles along both the lateral and elevation directions as those of a commercial mechanical 1-D array. In the proposed method, transmit and receive subapertures are constructed by cutting the four corners of a rectangular aperture to obtain a required image qualify with a small number of active channels. In addition the receive subaperture size is increased by using a sparse array scheme that uses every other elements in both directions. To suppress the grating lobes elevated due to the increase in clement spacing, fold-over array scheme is adopted in transmit, which doubles the effective size of a transmit aperture in each direction. Computer simulation results show that the proposed method can provide almost the same and greatly improved resolutions in the lateral and elevation directions, respectively compared with the conventional 3D imaging with a mechanical 1-D array.