• Title/Summary/Keyword: 3-D hydrodynamic model

Search Result 129, Processing Time 0.028 seconds

Axisymmetric Swirling Flow Simulation of the Draft Tube Vortex in Francis Turbines at Partial Discharge

  • Susan-Resiga, Romeo;Muntean, Sebastian;Stein, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 2009
  • The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and associated pressure fluctuations. The paper addresses the following fundamental question: is it possible to compute the circumferentially averaged flow field induced by the precessing vortex rope by using an axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or computed 3D velocity and pressure fields we would like to solve directly the circumferentially averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the full 3D flow simulation, with huge savings in both computing time and resources. In order to answer this question we first compute the axisymmetric turbulent swirling flow using available solvers by introducing a stagnant region model (SRM), essentially enforcing a unidirectional circumferentially averaged meridian flow as suggested by the experimental data. Numerical results obtained with both models are compared against measured axial and circumferential velocity profiles, as well as for the vortex rope location. Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing various techniques to stabilize the swirling flow. In particular, the methodology presented and validated in this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region extent, thus mitigating the vortex rope and expending the operating range for Francis turbines.

A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir (실시간 저수지 탁수 감시 및 예측 모의)

  • Chung, Se-Woong;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

Development of GPU-Paralleled multi-resolution techniques for Lagrangian-based CFD code in nuclear thermal-hydraulics and safety

  • Do Hyun Kim;Yelyn Ahn;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2498-2515
    • /
    • 2024
  • In this study, we propose a fully parallelized adaptive particle refinement (APR) algorithm for smoothed particle hydrodynamics (SPH) to construct a stable and efficient multi-resolution computing system for nuclear safety analysis. The APR technique, widely employed by SPH research groups to adjust local particle resolutions, currently operates on a serialized algorithm. However, this serialized approach diminishes the computational efficiency of the system, negating the advantages of acceleration achieved through high-performance computing devices. To address this drawback, we propose a fully parallelized APR algorithm designed to enhance both efficiency and computational accuracy, facilitated by a new adaptive smoothing length model. For model validation, we simulated both hydrostatic and hydrodynamic benchmark cases in 2D and 3D environments. The results demonstrate improved computational efficiency compared to the conventional SPH method and APR with a serialized algorithm, and the model's accuracy was confirmed, revealing favorable outcomes near the resolution interface. Through the analysis of jet breakup, we verified the performance and accuracy of the model, emphasizing its applicability in practical nuclear safety analysis.

Thrust Simulation and Experiments for Underwater Thrusters (수중추진기의 추진력 시뮬레이션 및 실험)

  • Ahn, Yong-Seok;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-59
    • /
    • 2017
  • In the early design stage of underwater vehicles, it is important to estimate the vehicle's underwater motion performance. The key design elements for the motion are propellers, battery power, and underwater resistance of the vehicle. Small thrusters with motor and propeller are usually used for the UUV(unmanned underwater vehicles). In this study, a multiphysics thruster model combining electro-mechanical and hydrodynamics characteristics was proposed to estimate the thruster performance. To show the applicability of the mathematical model, an sample thruster was used for the derive the unknown parameters of thruster. Hydrodynamic parameters were calculated for a 3D geometry model of the propeller by ANSYS/CFX program. Finally, Matlab/simulink program was used for the numerical simulation to predict the thruster performance from the given voltage/current input to the motor. Also, proved validity of simulation model by experiment test. Test were done by 2 mode(middle/high speed, reverse). The thruster performance curves obtained from this simulation were confirmed to be similar with experiment results.

The Shearing Characteristics of the Model Otter Boards with the Flap (Flap을 부착한 모형전개판의 전개성능)

  • KIM Yong-Hae;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.484-488
    • /
    • 1987
  • The model experiments were performed in tile circular water tank on the simple cambered and the super-V otter boards attached with the slotted fowler flap at the trailing edge in order to develop more efficient shearing characteristics. The dimension of the model otter boards was varied slightly in the flap chord ratio $0.20\~0.22$ and in the area $432\~426cm^2$ in accordance with the flap angle $30\~50^{\circ}$. The maximum shearing coefficient $C_L=1.78$ and hydrodynamic efficiency $C_L/C_D=4.0$ in the superV type were higher than their efficiencies $C_L=1.75$ and $C_L/C_D=3.7$ in the simple cambered type. As the shearing forces of the otter boards with flap were increased $20\~30\%$ mere than these without flap in spite of increasing the drag and the instability. The effect of flap should be fully investigated for the application.

  • PDF

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

Influence of Leading Edge Radii on Hydrodynamic Performances of a Foil Section

  • Ahn, Jong-Woo;Moon, Il-Sung;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.1-16
    • /
    • 1999
  • The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are solved using the standard $\textsc{k}-\varepsilon$ turbulence model and a finite volume method(FVM)with an O-type grid system. The computed results for its performance test are in good agreement with the published experimental data. The present method is applied to the study on the leading edge radius of a hydrofoil section Calculated results suggest that the leading edge radius has some effects on cavitation performances of a 2-D foil. A natural leading edge radius for the NACA66 section is determined from this study.

  • PDF

Application of Risk Indexes for Classifying Vulnerable Zone and Planning Structural Alternative in Preparation for Debris Flow Disaster (토사재해 취약 지역 분류 및 구조적 대안 수립을 위한 위험지표 적용)

  • Oh, Seung Myeong;Song, Chang Geun;Jung, Min Hyung;Seong, Joo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.112-116
    • /
    • 2017
  • This study applied risk indexes to the disaster flow event occurred at Mt. Umyeon region in 2011. A 2D hydrodynamic model was employed to calculate flow characteristics, and the model was validated against two dam break flow problems conducted by Bellos and EU CADAM project. The model performance was shown to be satisfactory. In order to determine which index is more appropriate to assess the vulnerability of debris flow, 3 risk indexes (FII, FHR and VDI) were considered. It was found that VDI, which determines the risk level only by the velocity factor, consistently predicted the risk level corresponding to 6 because the velocity range was widely organized. However, in the case of FII and FHR, the risk was reasonably quantified due to combined consideration of significant factors of flow velocity and debris thickness. Therefore, FII and FHR are expected to be more accurate than VDI. However, two indexes still need to be improved to include major factors such as debris density or material properties.

Study of Molecular Reorientation in Liquid with Raman Spectroscopy(III). Temperature Dependence of Molecular Rotation of $C_6F_6$ in Neat Liquid (액체분자의 재배치 운동에 관한 라만 분광법적 연구 (제3보) 순수한 $C_6F_6$ 액체분자의 회전운동에 대한 온도의 영향)

  • Myung Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.34-40
    • /
    • 1984
  • The reorientational motion of $C_6F_6$ in neat liquid is investigated in the temperature range 293∼333K by analyzing ${\nu}_2$ and ${\nu}_16$ bands of its Raman spectrum. Diffusion constants for the tumbling ($D_{\bo}$) and spinning ($D_{\parallel}$) motions are determined. The reorientation of the molecule seems to be distinctly anisotropic. Based on the hydrodynamic model, the tumbling motion of the figure axis of $C_6F_6$ is largely diffusional. On the other hand, the spinning motion of the same axis looks mostly inertial.

  • PDF

Effect of Solid Mass Inventory on Hydrodynamics Characteristics in a Circulating Fluidized Bed (순환유동층에서 유동매체량에 따른 수력학적 특성 연구)

  • Kim, E.K.;Shin, D.;Lee, J.;Kim, J.;Hwang, J.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.10-20
    • /
    • 2002
  • This paper discusses effect of solid mass inventory on the hydrodynamic characteristics of circulating fluidized bed(CFB). Operating parameters of solid mass inventory and air flow rates were varied to understand their effects on fludization pattern. Experimental measurements were made in a CFB of which height and diameter are 3m and 0.05m respectively. Black SiC particles ranging from $100{\mu}m\;to\;500{\mu}m$ were employed as the bed material. Superficial gas velocity of riser and J-valve fluidizing velocity were in the ranges of $1.39{\sim}3.24m/s\;and\;0.139{\sim}0.232m/s$, respectively. The axial solid fraction and solid circulation rate of CFB were calculated based on the experimental data and compared with modellings through IEA-CFBC Model and commercial CFD code.

  • PDF