• Title/Summary/Keyword: 3-D dose distribution

Search Result 190, Processing Time 0.029 seconds

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

Effects of Millimetric Shifts in Breast Cancer Radiotherapy on the Radiation Dose Distribution

  • Sanli, Yusuf Tolga;Cukurcayir, Funda;Abacigil, Fatma
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1197-1199
    • /
    • 2016
  • Background: This study aimed to facilitate decision-making in cases of breast cancer radiotherapy shifts by simulating millimetric shifts and analyzing their effects on dose distribution. Methods: The study included 30 patients with left side breast cancer who were treated with three dimensional conformal radiotherapy (3D-CRT) in the Radiation Oncology Department in Hatay Public Hospital, between January 2013 and April 2015. A treatment plan shifting at three axes with six different measures was simulated. Results: The biggest difference in values was (+3mm shift) 476cGy, with a 7.7 % change for heart and 25.6% for spinal cord. The shifts in values respectively for CTV min, mean, max were -4.8%, 2.5%, 4%. The differences for lymphatic min, mean, max were 21.3%, 20.3%, -12.2%. Conclusion: The most important thing is not the treatment plan quality, but its practicality. The treatment plan must be practical and its practice must be controlled rigidly.

Dose Verification of Intensity Modulated Radiation Therapy with Beam Intensity Scanner System

  • Vahc, Young-Woo;Park, Kwangyl;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.248-251
    • /
    • 2002
  • The intensity modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation treatment of patients. Patient dose verification is clinically one of the most important parts in the treatment delivery of the radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to the target helps to verify patient dose and to determine the physical characteristics of beams used in IMRT. A new method is presented for the pretreatment dosimetric verification of two dimensional distributions of photon intensity by means of Beam Intensity Scanner System (BISS) as a radiation detector with a custom-made software for dose calculation of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The BISS reproduces 3D- relative dose distribution from the digitized fluoroscopic signals obtained by digital video camera-based scintillator(DVCS) device in the IMRT. For the intensity modulated beams (IMBs), the calculations of absorbed dose are performed in absolute beam fluence profiles which are used for calculation of the patient dose distribution. The 3D-dose profiles of the IMBs with the BISS were demonstrated by relative measurements of photon beams and shown good agreement with radiographic film. The mechanical and dosimetric properties of the collimating of dynamic and/or step MLC system alter the generated intensity. This is mostly due to leaf transmission, leaf penumbra and geometry of leaves. The variations of output according to the multileaf opening during the irradiation need to be accounted for as well. These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

QUANTITATIVE DATA TO SHOW EFFECTS OF GEOMETRIC ERRORS AND DOSE GRADIENTS ON DOSE DIFFERENCE FOR IMRT DOSE QUALITY ASSURANCE MEASUREMENTS

  • Park, So-Yeon;Park, Jong-Min;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.183-189
    • /
    • 2011
  • To quantitatively evaluate how setup errors in conjunction with dose gradients contribute to the error in IMRT dose quality assurance (DQA) measurements. The control group consisted of 5 DQA plans of which all individual field dose differences were less than ${\pm}5%$. On the contrary, the examination group was composed of 16 DQA plans where any individual field dose difference was larger than ${\pm}10%$ even though their total dose differences were less than ${\pm}5%$. The difference in 3D dose gradients between the two groups was estimated in a cube of $6{\times}6{\times}6\;mm^3$ centered at the verification point. Under the assumption that setup errors existed during the DQA measurements of the examination group, a three dimensional offset point inside the cube was sought out, where the individual field dose difference was minimized. The average dose gradients of the control group along the x, y, and z axes were 0.21, 0.20, and 0.15 $cGy{\cdot}mm^{-1}$, respectively, while those of the examination group were 0.64, 0.48, and 0.28 $cGy{\cdot}mm^{-1}$, respectively. All 16 plans of the examination group had their own 3D offset points in the cube. The individual field dose differences recalculated at the offset points were mostly diminished and thus the average values of total and individual field dose differences were reduced from 3.1% to 2.2% and 15.4% to 2.2%, respectively. The offset distribution turned out to be random in the 3D coordinate. This study provided the quantitative data that support the large individual field dose difference mainly stems from possible geometric errors (e.g., random setup errors) under the influence of steep dose gradients of IMRT field.

Effect of an Acrylic Plate and SSD on Dose Profile and Depth Dose Distribution of 9 MeV Electron Beams (에너지 저하체로서 아크릴과 SSD 가 9MeV 전자선의 측방 및 깊이선량분포에 미치는 효과)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.65-71
    • /
    • 1998
  • The aims are to evaluate the effects of an 1.0 cm acrylic plate and SSD on the dose profile and depth dose distribution of 9 MeV electron beam and to analyse adequacy for using an acrylic plate to reduce energy of electron beams. An acrylic plate of 1.0 cm thickness was used to reduce energy of 9 MeV electron beam to 7 MeV. The plate was put on an electron applicator at 65.4 cm distance from x-ray target. The size of the applicator was 10${\times}$l0cm at 100 cm SSD. For 100cm, l05cm and 110cm SSD, depth dose on beam axis and dose profiles at d$\_$max/ on two principal axes were measured using a 3D water phantom. From depth dose distributions, d$\_$max/, d$\_$85/, d$\_$50/ and R$\_$p/, surface dose, and mean energy and peak energy at surface were compared. From dose profiles flatness, penumbra width and actual field size were compared. For comparison, 9 MeV electron beams were measured. Surface dose of 7 MeV electron beams was changed from 85.5% to 82.2% increasing SSD from 100 cm to 110 cm, and except for dose buildup region, depth dose distributions were independent of SSD. Flatness of 7 MeV ranged from 4.7% to 10.4% increasing SSD, comparing 1.4% to 3.5% for 9 MeV. Penumbra width of 7 MeV ranged from 1.52 cm to 3.03 cm, comparing 1.14 cm to 1.63 cm for 9 MeV. Actual field size increased from 10.75 cm to 12.85 cm with SSD, comparing 10.32 cm to 11.46 cm for 9 MeV. Virtual SSD's of 7 and 9 MeV were respectively 49.8 cm and 88.5cm. In using energy reducer in electron therapy, depth dose distribution were independent of SSD except for buildup region as well as open field. In case of using energy reducer, increasing SSD made flatness to deteriorate more severely, penumbra width more wide, field size to increase more rapidly and virtual SSD more short comparing with original electron beam. In conclusion, it is desirable to use no energy reducer for electron beam, especially for long SSD.

  • PDF

The Verification of Dosimetric Characteristics of the 3-D Compensator with the Exit Beam Dose Profile (Exit Beam Dose Profile을 이용한 3차원 보상체의 성능확인)

  • 이상훈;이병용;권수일;김종훈;장혜숙
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.3-17
    • /
    • 1996
  • Dose compensators have been widely used in radiotherapy fields. But, few reliable verification methods have been reported. We have developed the verification method for the evaluation of the effect of dose compensator using exit beam dose profile. The exit beam dose profiles were measured with and without dose compensator. For this purpose X-Omat V films and lead screened cassettes are used and dose distibutions are compared. Phantom data are collected using CT simulator(Picker, AcQ Sim) and compensator information can be obtained from Render Plan 3-D planning System. Aluminum Compensators are generated by computer controlled milling machine. The real dose distribution in the phantom and the exit beam dose profile can be obtained simultaneously with the films in the phantom and the opposite site of the beam. Dose compensations effects for oblique beam, parallel opposing beam and inhomogeneous human phantom can be obtained using above tools. And we could simate those effects with exit beam dose profile using the method that we have developed in this study.

  • PDF

조영제 사용 전${\cdot}$후 불균질 조직 보정 알고리즘에 따른 선량변화에 대한 연구

  • Kim, Ju-Ho;Jo, Jeong-Hui;Lee, Seok;Jeon, Byeong-Cheol;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • Purpose : The aim of this study is to investigate the effect of tissue inhomogeneities when appling to contrast medium among Homogeneous, Batho and ETAR dose calculation method in RTP system. Method and Material : We made customized heterogeneous phantom it filled with water or contrast medium slab. Phantom scan data have taken PQ 5000 (CT scanner, Marconi, USA) and then dose was calculated in 3D RTP (AcQ-Plan, Marconi, USA) depends on dose calculation algorithm (Homogeneous, Batho, ETAR). The dose comparisons were described in terms of 2D isodose distribution, percent depth dose data, effective path length and monitor unit. Also dose distributions were calculated with homogeneous and inhomogeneous correction algorithm, Batho and ETAR, in each patients with different clinical sites. Results : Result indicated that Batho and ETAR method gave rise to percent depth dose deviation $1.5{\sim}2.7\%,\;2.3{\sim}3.5\%$ (6MV, field size $10{\times}10cm^2$) in each status with and without contrast medium. Also show that effective path lengths were more increase in contrast status (23.14 cm) than Non-contrast (22.07 cm) about $4.9\%$ or 10.7 mm (In case Hounsfield Unit 270) and these results were similary showned in each patient with different clinical site that was lung. prostate, liver and brain region. Concliusion : In conclusion we shown that the use of inhomogeneity correction algorithm for dose calculation in status of injected contrast medium can not represent exact dose at GTV region. These results mean that patients will be more irradiated photon beam during radiation therapy.

  • PDF

Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron (고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動))

  • Chu, S.S.;Lee, D.H.;Choi, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

Utilization-Focused Reduction of Radiation Exposure with XCP-DS FIT Sensor Holder by Measuring Dose of Dental X-ray Generator (구내 방사선발생기의 선량 분포측정을 통한 필름유지기구(XCP-DS FIT)의 피폭선량감소에 대한 유용성)

  • Lee, Kyung Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.465-471
    • /
    • 2012
  • In this study, three dimensional X-ray dose distribution from dental X-ray generator system was measured by ALOKA PDM-117 dosimeter. The X-ray dose distribution will be change with XCP-DS FIT in oral shot, because the distance between X-ray generator and the dosimeter. The X-ray dose change affects on patient exposure and radiograph image quality. Therefore, it is important to obtain relation between the X-ray dose and the distance. The X-ray dose at the central position was decreased with increasing the distance. Furthermore, the dose at the edge of the X-ray flux was increased with increasing the distance. The increased dose affects on the patient radiation exposure. The present results will provide for good dental radiograph image and reducing radiation over-exposure on patient.