• Title/Summary/Keyword: 3-D dose distribution

Search Result 188, Processing Time 0.032 seconds

Clinical Application Analysis of 3D-CRT Methods Using Tomotherapy (토모테라피를 이용한 3차원 입체 조형 치료의 임상적 적용 분석)

  • Cho, Kang-Chul;Kim, Joo-Ho;Kim, Hun-Kyum;Ahn, Seung-Kwon;Lee, Sang-Kyoo;Yoon, Jong-Won;Cho, Jeong-Hee;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 2013
  • This study investigates the case of clinical application for TomoDirect 3D-CRT(TD-3D) and TomoHelical 3D-CRT(TH-3D) with evaluating dose distribution for clinical application in each case. Treatment plans were created for 8 patients who had 3 dimensional conformal radiation therapy using TD-3D and TH-3D mode. Each patients were treated for sarcoma, CSI(craniospinal irradiaion), breast, brain, pancreas, spine metastasis, SVC syndrome and esophagus. DVH(dose volume histogram) and isodose curve were used for comparison of each treatment modality. TD-3D shows better dose distribution over the irradiation field without junction effect because TD-3D was not influenced by target length for sarcoma and CSI case. In breast case, dosimetric results of CTV, the average value of D 99%, D 95% were $49.2{\pm}0.4$ Gy, $49.9{\pm}0.4$ Gy and V 105%, V 110% were 0%, respectively. TH-3D with the dosimetric block decreased dose of normal organ in brain, pancreas, spine metastasis case. SCV syndrome also effectively decreased dose of normal organ by using dose block to the critical organs(spinal cord <38 Gy). TH-3D combined with other treatment modalities was possible to boost irradiation and was total dose was reduced to spinal cord in esophagus case(spinal cord <45 Gy, lung V 20 <20%). 3D-CRT using Tomotherapy could overcomes some dosimetric limitations, when we faced Conventional Linac based CRT and shows clinically proper dose distribution. In conclusion, 3D-CRT using Tomotherapy will be one of the effective 3D-CRT techniques.

Development of Two-dimensional Prompt-gamma Measurement System for Verification of Proton Dose Distribution (이차원 양성자 선량 분포 확인을 위한 즉발감마선 이차원분포 측정 장치 개발)

  • Park, Jong Hoon;Lee, Han Rim;Kim, Chan Hyeong;Kim, Sung Hun;Kim, Seonghoon;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • In proton therapy, verification of proton dose distribution is important to treat cancer precisely and to enhance patients' safety. To verify proton dose distribution, in a previous study, our team incorporated a vertically-aligned one-dimensional array detection system. We measured 2D prompt-gamma distribution moving the developed detection system in the longitudinal direction and verified similarity between 2D prompt-gamma distribution and 2D proton dose distribution. In the present, we have developed two-dimension prompt-gamma measurement system consisted of a 2D parallel-hole collimator, 2D array-type NaI(Tl) scintillators, and multi-anode PMT (MA-PMT) to measure 2D prompt-gamma distribution in real time. The developed measurement system was tested with $^{22}Na$ (0.511 and 1.275 MeV) and $^{137}Cs$ (0.662 MeV) gamma sources, and the energy resolutions of 0.511, 0.662 and 1.275 MeV were $10.9%{\pm}0.23p%$, $9.8%{\pm}0.18p%$ and $6.4%{\pm}0.24p%$, respectively. Further, the energy resolution of the high gamma energy (3.416 MeV) of double escape peak from Am-Be source was $11.4%{\pm}3.6p%$. To estimate the performance of the developed measurement system, we measured 2D prompt-gamma distribution generated by PMMA phantom irradiated with 45 MeV proton beam of 0.5 nA. As a result of comparing a EBT film result, 2D prompt-gamma distribution measured for $9{\times}10^9$ protons is similar to 2D proton dose distribution. In addition, the 45 MeV estimated beam range by profile distribution of 2D prompt gamma distribution was $17.0{\pm}0.4mm$ and was intimately related with the proton beam range of 17.4 mm.

Development of 3-D Radiosurgery Planning System Using IBM Personal Computer (IBM Personal Computer를 이용한 3차원적 뇌정위 방사선 수술계획 시스템의 개발)

  • Suh Tae-Suk;Suh Doug-Young;Park Charn Il;Ha Sung Whan;Kang Wee Saing;Park Sung Hun;Yoon Sei Chul
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.167-174
    • /
    • 1993
  • Recently, stereotactic radiosurgery plan is required with the information of 3-D image and dose distribution. A project has been doing if developing LINAC based stereotactic radiosurgery since April 1991. The purpose of this research is to develop 3-D radiosurgery planning system using personal computer. The procedure of this research is based on two steps. The first step is to develop 3-D localization system, which input the image information of the patient, coordinate transformation, the position and shape of target, and patient contour into computer system using CT image and stereotactic frame. The second step is to develop 3-D dose planning system, which compute dose distribution on image plane, display on high resolution monitor both isodose distribution and patient image simultaneously and develop menu-driven planning system. This prototype of radiosurgery planning system was applied recently for several clinical cases. It was shown that our planning system is fast, accurate and efficient while making it possible to handle various kinds of image modalities such as angiography, CT and MRI. It makes it possible to develop general 3-D planning system using beam's eye view or CT simulation in radiation therapy in future.

  • PDF

The Usability Analysis of 3D-CRT, IMRT, Tomotherpy Radiation Therapy on Nasopharyngeal Cancer (NPC의 방사선치료시 3D-CRT, IMRT, Tomotherapy의 유용성 분석)

  • Song, Jong-Nam;Kim, Young-Jae;Hong, Seung-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.365-371
    • /
    • 2012
  • The radiation therapy treatment technique is developed from 3D-CRT, IMRT to Tomotherapy. and these three technique was most widely using methods. We find out a comparison normal tissue doses and tumor dose of 3D-CRT, IMRT(Linac Based), and Tomotherapy on Head and Neck Cancer. We achieved radiological image used the Human model phantom (Anthropomorphic Phantom) and it was taken CT simulation (Slice Thickness : 3mm) and GTV was nasopharngeal region and PTV(including set-up margin) was GTV plus 2mm area. and transfer those images to the radiation planning system (3D-CRT - ADAC-Pinnacle3, Tomotherapy - Tomotherapy Hi-Art System). The prescription dose was 7020 cGy and measuring PTV's dose and nomal tissue (parotid gland, oral cavity, spinal cord). The PTV's doses was Tomotherapy, Linac Based - IMRT, 3D-CRT was 6923 cGy, 6901 cGy and 6718 cGy its dose value was meet TCP because its value was up to the 95% based on 7020 cGy, Nomal tissue (parotid gland, oral cavity, spinal cord) was 1966 cGy(Tomotherapy), 2405 cGy(IMRT), 2468 cGy(3D-CRT)[parotid gland], 2991 cGy(Tomotherapy), 3062 cGy(IMRT), 3684 cGy (3D-CRT)[oral cavity], 1768 cGy(Tomotherapy), 2151 cGy(IMRT), 4031 cGy(3D-CRT)[spinal cord] its value did not exceeded NTCP. All the treatment techniques are equated with tumor and nomal tissue doses. The 3D-CRT was worse than other techniques on dose distribution, but it is reasonable in terms of TCP and NTCP baseline Tomotherapy, IMRT -dose distribution was relatively superior- was hard to therapy to claustrophobic patients and patients with respiratory failure. Particularly, in case on Tomotherapy, it take MVCT before treatment so dose measurement will be unnecessary radiation exposure to patients. Conclusion, Tomotherapy was the best treatment technique and 2nd was IMRT, and 3rd 3D-CRT. But applicable differently depending on the the patient's condition even though dose not matter.

Clinical Application of 3-D Compensator in Head and Neck Cancer (두경부암 환자 치료시 3차원 보상체의 임상 적용에 대한 고찰)

  • Hong, Dong-Ki;Lee, Jeong-Woo;Lee, Koo-Hyun;Park, Kwang-Ho;Kim, Jeong-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1997
  • The goal of radiation treatment planning is to deliver the dose to the patient within $5\%$ of that prescribed. We have often encountered the situation that the area which have not only several irregular contours but also tissue heterogeneities should be treated. With conventional devices such as wedges, missing tissue compensator. there are some limitations to achieve the uniform dose distribution in treatment volume. The use of CT simulator, 3-D planning system, computer-controlled milling machine enables it to deliver the dose uniformally. This report includes the whole procedure which have patient data acquisition 3D planning, computer-controlled milling, performance verification of 3D compensator, and TLD evaluation. We applied it for the treatment of head and heck cancer only. In Spite of the irregular contour and different electron density of tessue, we have achieved the uniformity of the dose distribution within ${\pm}3\%$ relatively. Although there are some problems which are not only verification of performance but uncertainties of using the new treatment device, we believe that the improvement of dosimetry will eliminate the uncertainties of that application. so the other lesions besides head and neck can will be ale to use the 3D compensator to achieve the dose uniformity

  • PDF

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

The usefulness of Forward IMRT for Head and Neck Cancer (두경부(Head & Neck)종양에서 Forward IMRT 유용성에 관한 고찰)

  • Baek Geum Mun;Kim Dae Sup;Park Kwang Ho;Kim Chung Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • I. Purpose The dose distribution in normal tissues and target lesions is very important in the treatment planning. To make the uniform dose distribution in target lesions, many methods has been used. Especially in the head and neck, the dose inhomogeneity at the skin surface should be corrected. Conventional methods have a limitation in delivering the enough doses to the planning target volume (PTV) with minimized dose to the parotid gland and spinal cord. In this study, we investigated the feasibility and the practical QA methods of the forward IMRT. II. Material and Methods The treatment plan of the forward IMRT with the partial block technique using the dynamic multi-leaf collimator (dMLC) for the patients with the nasopharyngeal cancer was verified using the dose volume histogram (DVH). The films and pinpoint chamber were used for the accurate dose verification. III. Results As a result of verifying the DVH for the 2-D treatment plan with the forward IMRT, the dose to the both parotid gland and spinal cord were reduced. So the forward IMRT could save the normal tissues and optimize the treatment. Forward IMRT can use the 3-D treatment planning system and easily assure the quality, so it is easily accessible comparing with inverse IMRT IV. Conclusion The forward IMRT could make the uniform dose in the PTV while maintaining under the tolerance dose in the normal tissues comparing with the 2-D treatment.

  • PDF

A Study on Dobe Distribution outside Co-60 $\gamma$ Ray ana 10MV X Ray Fields ($^{60}Co\;\gamma$선과 10MV X선의 조사면 밖의 선량분포에 관한 연구)

  • Kang, Wee-Saing;Huh, Seung-Jae;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.271-280
    • /
    • 1984
  • The peripheral dose, defined as the dose outside therapeutic photon fields, which is responsible for the functional damage of the critical organs, fetus, and radiation. induced carcinogenesis, has been investigated for $^{60}Co\;\gamma$ ray and 10 MV Xray. It was measured by silicon diode controlled by semiautomated water phantom without any shielding or with lead plate of HVL thickness put horizontally or vertically to shield stray radiations. Authors could obtain following results. 1. The peripheral dose was larger than $0.7\%$ of central axis maximum dose even at 20cm distance from field margin. That is clinically significant, so it should be reduced. 2. Even for square fields of 10 MV Xray, radial peripheral dose distribution did not coincide with transverse distribution, because of the position of collimator jaws. 3. Between surface and $d_m$, the peripheral dose distributions show a pattern of the dose distribution of electron beams and the maximum doss was approximately proportional to the length of a side of square field. 4. The peripheral doses depended on radiation quality, field size, distance from field margin and depth in water. Distance from field margin was the most important factor. 5. Except for near surface, the peripheral dose from phantom was approximately equal to that from therapy unit. 6. To reduce the surface dose outside fields, therapist should shield stray radiations from therapy unit by lead plate of at least one HVL for 10 MV X-ray and by bolus equivalent to tissue of 0.5cm thickness for $^{60}Co$. 7. To reduce the dose at depth deeper than $d_m$, it is desirable to shield stray radiations from therapy unit by lead.

  • PDF

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF