• 제목/요약/키워드: 3-D display system

검색결과 601건 처리시간 0.026초

Implementation of Multiview Stereoscopic 3D Display System using Volume Holographic Lenticular Sheet (VHLS 광학판 기반의 다시점 스테레오스코픽 3D 디스플레이 시스템의 구현)

  • 이상우;이맹호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권5C호
    • /
    • pp.716-725
    • /
    • 2004
  • In this paper, a new multiview stereoscopic 3D display system using a VHLS(volume holographic lenticular sheet) is suggested. The VHLS, which acts just like an optical direction modulator, can be implemented by recording the diffraction gratings corresponding each directional vector of the multiview stereoscopic images in the holographic recording material by using the angularly multiplexed recording property of the conventional volume hologram. Then, this fabricated VHLS is attached to the panel of a LCD spatial light modulator and used to diffract each of the multiview image loaded in a SLM to the corresponding spatial direction for making a 3D stereo view-zone. Accordingly, in this paper, the operational principle and characteristics of the VHLS are analyzed and an optimized 4-view VHLS is fabricated by using a commercial photopolymer. Then, a new VHLS-based 4-view stereoscopic 3D display system is implemented. Through some experimental results using a 4-view image synthesized with adaptive disparity estimation algorithm, it is suggested that implementation of a new VHLS-based multiview stereoscopic 3D display system can be possible.

Convertible 3D-2D display by use of integral imaging system with plastic fiber array

  • Kim, Young-Min;Choi, Hee-Jin;Cho, Seong-Woo;Kim, Yun-Hee;Kim, Joo-Hwan;Park, Gil-Bae;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1482-1485
    • /
    • 2007
  • A three-dimensional (3D)-two-dimensional (2D) convertible display system using a plastic fiber array is proposed. The proposed system has an advantage of making use of a light source for 3D image from an arbitrary location. The optical efficiency of 3D images in the proposed system is enhanced compared with previous research.

  • PDF

Volumetric Image System for High Efficiency Video Coding (고효율 비디오코딩을 위한 입체영상시스템)

  • Kim, Sang Hyun
    • The Journal of the Korea Contents Association
    • /
    • 제16권1호
    • /
    • pp.515-520
    • /
    • 2016
  • Volumetric image system has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. In case of stereo system for volumetric display motion vectors, disparity vectors from the stereoscopic sequences and residual images with the reference images has been transmitted, and the stereoscopic sequences have been reconstructed at the receiver for volumetric display. So central issue for the design of efficient volumetric image system lies in selecting an appropriate stereo matching and robust vision system. In this paper, we proposed high efficient vision system, which design vision stage with rotating and moving horizontally, and match the successive stereo image efficiently. In experimental results with volumetric image system, the proposed method represents high efficiency with minimizing error and low computational load for volumetric display.

Method of Display and Processing of Binocular Stereoscopic Image for 3D Endoscopy (3차원 내시경술을 위한 양안 입체 영상처리 및 디스플레이 방법)

  • 송철규
    • Journal of Biomedical Engineering Research
    • /
    • 제19권5호
    • /
    • pp.531-538
    • /
    • 1998
  • This paper represents the design of 3D endoscopic image processing system in order to Improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. The proposed 3D systems have four features of stereo endoscopic image processing The multiplexer give field seauential stereo for recording and for aligning cameras and viewing stereo with 3D monitor. Demultiplexing of the field sequential image which separates out the R and L images for dual TFT-LCD 3D monitor viewed with passive polarized glasses. separable processing of the left and right eye images, and design of TFT-LCD 3D monitor. The viewing angle, zone, and image quality of the Polarization-type Stereoscopic Display (SM500TFT-3D) system which we have developed using 15 Samsung TFT-1.CD with a screen resolution of 1024×768 pixels were measured and compared with those of Electric Shutter-type Stereoscopic Display system. The result of experiments shows that the Polarization-type Stereoscopic Display System using TFT-LCD has a wade viewing angle and zone which Is necessary fort multi-view and it has better image quality and stability of the optical performances than the Electric Shutter-type does.

  • PDF

Viewing Angle-Improved 3D Integral Imaging Display with Eye Tracking Sensor

  • Hong, Seokmin;Shin, Donghak;Lee, Joon-Jae;Lee, Byung-Gook
    • Journal of information and communication convergence engineering
    • /
    • 제12권4호
    • /
    • pp.208-214
    • /
    • 2014
  • In this paper, in order to solve the problems of a narrow viewing angle and the flip effect in a three-dimensional (3D) integral imaging display, we propose an improved system by using an eye tracking method based on the Kinect sensor. In the proposed method, we introduce two types of calibration processes. First process is to perform the calibration between two cameras within Kinect sensor to collect specific 3D information. Second process is to use a space calibration for the coordinate conversion between the Kinect sensor and the coordinate system of the display panel. Our calibration processes can provide the improved performance of estimation for 3D position of the observer's eyes and generate elemental images in real-time speed based on the estimated position. To show the usefulness of the proposed method, we implement an integral imaging display system using the eye tracking process based on our calibration processes and carry out the preliminary experiments by measuring the viewing angle and flipping effect for the reconstructed 3D images. The experimental results reveal that the proposed method extended the viewing angles and removed the flipping images compared with the conventional system.

The illumination system design of Integrated Screen 3D Display

  • Lin, Chu-Hsun;Lin, Chun-Chuan;Lo, Hsin-Hsiang;Chung, Shuang-Chao;Chen, Tian-Yuan;Wang, Chy-Lin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1379-1382
    • /
    • 2009
  • The 3D display has been used in optical projection technology to connect twenty mini- projectors with seamless image tiling. In this way, we can improve the projected resolution by reducing each project screen and increase projected area by connect several mini-projectors. In this article, the illumination system uses the LED light source, non- telecentric structure and LCOS panel, and it's total length is less than 10 centimeter. It can build a seamless large display by tiling multiple projectors.

  • PDF

Innovative Method to Expand a Degree of Freedom of Observation in the Depth Direction without Losses of the Horizontal Number of Views in Autostereoscopic Multi-Views 3D Display System (시차장벽식 무안경 다시점 입체디스플레이 시스템에서 수평방향의 시점 수 저하 없이 깊이방향의 자유도를 증가시키기 위한 혁신적 방법)

  • Lee, Kwang-Hoon;Park, Min-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제38C권10호
    • /
    • pp.903-910
    • /
    • 2013
  • An autostereoscopic multi-view 3D display system has the narrower degrees of freedom in the observational directions, such as the horizontal and perpendicular directions to the display plane, than the glasses-on type of 3D display. In this paper, we propose an innovative method to expand the width of the viewing zone formed in the depth direction while maintaining the number of views in the horizontal direction by using a triple segmented-slanted parallax barrier (TS-SPB) in the glasses-off type of 3D display. The validity of the proposal was verified by an optical simulation based on an environment similar to an actual case. The maximum number of views that can be displayed in the horizontal direction is 2n, and the width of the viewing zone with depth increased up to a factor of 3.36 compared to the existing one-layered parallax barrier system.

A Study of Walking Guide for the Blind by Tactile Display (촉각제시에 의한 시각장애인 보행안내에 관한 연구)

  • Yoon, Myoung-Jong;Kang, Jeong-Ho;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제13권8호
    • /
    • pp.783-789
    • /
    • 2007
  • In this paper, firstly, we propose a generating method of the 3-D obstacle map using ultrasonic sensors. Secondly, we try to find the necessary stimulation conditions of compact tactile display device for effective transfer of obstacle information. The final goal of this research is the development of a walking guide system for the blind to walk safely. The walking guide system consists of a guide vehicle for the obstacle detection and a tactile display device for the transfer of the obstacle information. The guide vehicle, located in front of the walking blind, detects the obstacle using ultrasonic sensors. The processed information makes an obstacle map and transmits safe path and emergency situation to the blind by the tactile display. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed.

Super multi-view 3-D display system based on focused light Array using reflective vibrating scanner array (ViSA)

  • Ho-In Jeon;Nak-Hee Jung;Jin-San Choi;Young Jung;Young Huh
    • Broadcasting and Media Magazine
    • /
    • 제6권2호
    • /
    • pp.84-101
    • /
    • 2001
  • In this paper, we present a primitive system design of a super multi-view(SMV) 3-D display system based on a focused light array(FLA) concept using reflective vibrating scanner array(ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving left and right an array of curvature-compensated mirrors or diamond-ruled reflective grating attached to a vibrating membrane. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept proposed by Kajiki at TAO(Telecommunications) Advancement Organization). The proposed system has great advantages in the sense that it requires neither huge imaging optics nor mechanical scanning pals. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, may replace polygon mirror-based scanners in the near future.

  • PDF

Optical Implementation of Incoherent Holographic 3D Display System using Modified Triangular and Mach-Zehender Interferometer (변형된 삼각 및 마하젠더 간섭계 기반의 인코히어런트 홀로그래픽 3D 디스플레이 시스템의 광학적 구현)

  • 김승철;구정식;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권4C호
    • /
    • pp.524-532
    • /
    • 2004
  • In this paper, an incoherent holographic 3D imaging and display system based on the modified triangular and Mach-Zehnder interferometers is optically implemented and some experiments are carried out. Incoherent hologram of a 3D object is generated by using the hologram input system of modified triangular interferometer. Then this complex hologram is reconstructed by using the hologram output system of modified Mach-Zehnder interferometer in which two LCD spatial light modulators and a waveplate are inserted. From the experiment with two point sources having a depth difference of 100 mm each other, it is revealed that each point source can be independently reconstructed at its own focal position from the complex hologram, while both of the bias and conjugate image are simultaneously eliminated at the same time. And in the experiment with the real 3D object of two dices having a depth difference of 30 mm each other, it is also conformed that the bias and conjugate image can be effectively eliminated from the hologram pattern and each 3D dice can be also successfully reconstructed at its own focal position from the complex hologram. These experiment results finally suggest a possibility of implementing a new incoherent holographic 3D imaging and display system using the modified triangular and Mach-Zehender interferometers.