• 제목/요약/키워드: 3-D Segmentation

검색결과 459건 처리시간 0.03초

퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할 (Segmentation of Multispectral MRI Using Fuzzy Clustering)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권4호
    • /
    • pp.333-338
    • /
    • 2000
  • 본 논문에서는 T1 강조영상, T2 강조 영상 그리고 PD의 영상의 특징을 상호 보완적으로 이용한 자동적인 영상 분할법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 단계에서는 PD 영상으로부터 대뇌 마스크를 획득한 후, T1과 T2, PD의 입력 영상에 대뇌 마스크를 씌워 각각의 대뇌 영상을 추출하고, 둘째 단계에서는 대뇌 내부 조직에 해당하는 두드러진 클러스터(outstanding cluster)를 3차원 클러스터들 중에서 선택한다. 3차원 클러스터는 최적스케일 영상(optimal scale image)으로 이루어지는 3차원 공간상에서 화소가 밀집된 봉우리들을 교집합해서 생성되는 클러스터로 결정한다. 최적스케일 영상은 각 2타원 히스토그램에 스케일 스페이스 필터링을 적용시키고 그래프(graph) 구조를 검색하여 2차원 히스토그램의 모양을 가장 잘 나타내는 봉우리(peak) 영상을 최적 스케일 영상으로 선택한다. 마지막 단계에서는 앞에서 찾은 두드러진 클러스터의 중심값을 FCM 알고리듬의 초기중심 값으로 두고, FCM 알고리듬을 이용하여 대뇌 영상을 분할한다. 제안한 분할 알고리듬은 정확한 클러스터의 중심값을 계산함으로 초기 값을 영향을 많이 받는 FCM 알고리듬의 단점을 보완하였고 다중 스펙트럼 영상의 특성을 조합하여 분할에 이용함으로 단일 스펙트럼 영상만을 이용하는 방법보다 향상된 결과를 얻을 수 있었다.

  • PDF

Right Ventricular Mass Quantification Using Cardiac CT and a Semiautomatic Three-Dimensional Hybrid Segmentation Approach: A Pilot Study

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.901-911
    • /
    • 2021
  • Objective: To evaluate the technical applicability of a semiautomatic three-dimensional (3D) hybrid CT segmentation method for the quantification of right ventricular mass in patients with cardiovascular disease. Materials and Methods: Cardiac CT (270 cardiac phases) was used to quantify right ventricular mass using a semiautomatic 3D hybrid segmentation method in 195 patients with cardiovascular disease. Data from 270 cardiac phases were divided into subgroups based on the extent of the segmentation error (no error; ≤ 10% error; > 10% error [technical failure]), defined as discontinuous areas in the right ventricular myocardium. The reproducibility of the right ventricular mass quantification was assessed. In patients with no error or < 10% error, the right ventricular mass was compared and correlated between paired end-systolic and end-diastolic data. The error rate and right ventricular mass were compared based on right ventricular hypertrophy groups. Results: The quantification of right ventricular mass was technically applicable in 96.3% (260/270) of CT data, with no error in 54.4% (147/270) and ≤ 10% error in 41.9% (113/270) of cases. Technical failure was observed in 3.7% (10/270) of cases. The reproducibility of the quantification was high (intraclass correlation coefficient = 0.999, p < 0.001). The indexed mass was significantly greater at end-systole than at end-diastole (45.9 ± 22.1 g/m2 vs. 39.7 ± 20.2 g/m2, p < 0.001), and paired values were highly correlated (r = 0.96, p < 0.001). Fewer errors were observed in severe right ventricular hypertrophy and at the end-systolic phase. The indexed right ventricular mass was significantly higher in severe right ventricular hypertrophy (p < 0.02), except in the comparison of the end-diastolic data between no hypertrophy and mild hypertrophy groups (p > 0.1). Conclusion: CT quantification of right ventricular mass using a semiautomatic 3D hybrid segmentation is technically applicable with high reproducibility in most patients with cardiovascular disease.

실안개와 상대적 높이 단서 기반의 깊이 지도를 이용한 2D/3D 변환 기법 (2D/3D conversion method using depth map based on haze and relative height cue)

  • 한성호;김요섭;이종용;이상훈
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.351-356
    • /
    • 2012
  • 본 논문은 단일영상의 실안개 정보와 상대적 높이 단서를 기반으로 깊이 지도를 생성하고, 이를 이용하여 2D/3D 변환을 하는 기법에 관한 연구이다. 기존의 실안개 정보만을 깊이 지도로써 이용하는 경우, 안개가 없는 영상에서 오류가 발생할 수 있다. 본 논문에서는 이러한 오류를 줄이기 위해, 상대적 높이 단서 기반의 깊이 지도를 생성하고, 실안개 정보와 결합하는 방법을 제안하였다. 또한 Mean Shift Segmentation을 이용한 gray scale 영상과 실안개 정보의 깊이 지도를 결합하여 객체의 경계를 선명화함으로써 3D 영상의 품질을 향상시킬 수 있도록 하였다. 입력영상과 최종 깊이 지도를 DIBR(Depth Image Based Rendering)을 통해 좌영상과 우영상의 시점영상을 생성하고, 적청영상의 형태로 결합함으로써 3D 영상을 생성하였고, 깊이 지도간의 PSNR을 측정하여 검증하였다.

3차원 CT 영상을 위한 자동 :Segmentation 기법 (A Method of Automatic Segmentation in 3-Dimensional CT image)

  • 성원;김재평;박종원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.634-637
    • /
    • 2002
  • 오늘날 CT나 MR등을 통한 의학 영상 기술과 컴퓨터 성능의 향상으로 인체 내부 장기의 영상을 비교적 용이하게 얻을 수 있으며 얻어진 영상 정보는 컴퓨터로 수치와 되므로 데이터의 조작 및 가공이 용이하다. 그러나, 이 데이터는 2D 슬라이스들의 연속으로 표현되므로 이것을 보다 편리하게 가시화. 조작, 분석이 용이한 상태로 바꾸기 위해서는 3차원 구조로의 재구성이 필요하게 된다. 이것을 위하여 무엇보다도 먼저 CT나 MR을 통하여 얻어진 영상을 분석하여 특정 장기의 영상 부분를 다른 조직의 영상부분으로부터 분리(segmentation)할 필요가 있다. 이러한 Segmentation방법에는 여러가지가 있는데, 수작업의 결합 등으로 인해서 비효율적인 문제점을 가지고 있다. 이에 본 논문은 보다 효율적인 segmentation의 처리를 위하여 region-based 기법을 응용하여 새로운 segmentation 방법을 개발하였다. 그리하여, 본 논문이 제안한 알고리즘을 슬라이스 간격이 큰 2차원 복부 CT 영상에 적용시켜 간(liver)의 추출을 시도하였고 향상된 성능을 확인할 수 있었다.

  • PDF

효율적인 개방형 어휘 3차원 개체 분할을 위한 클래스-독립적인 3차원 마스크 제안과 2차원-3차원 시각적 특징 앙상블 (Class-Agnostic 3D Mask Proposal and 2D-3D Visual Feature Ensemble for Efficient Open-Vocabulary 3D Instance Segmentation)

  • 송성호;박경민;김인철
    • 정보처리학회 논문지
    • /
    • 제13권7호
    • /
    • pp.335-347
    • /
    • 2024
  • 개방형 어휘 3차원 포인트 클라우드 개체 분할은 3차원 장면 포인트 클라우드를 훈련단계에서 등장하였던 기본 클래스의 개체들뿐만 아니라 새로운 신규 클래스의 개체들로도 분할해야 하는 어려운 시각적 작업이다. 본 논문에서는 중요한 모델 설계 이슈별 기존 모델들의 한계점들을 극복하기 위해, 새로운 개방형 어휘 3차원 개체 분할 모델인 Open3DME를 제안한다. 첫째, 제안 모델은 클래스-독립적인 3차원 마스크의 품질을 향상시키기 위해, 새로운 트랜스포머 기반 3차원 포인트 클라우드 개체 분할 모델인 T3DIS[6]를 마스크 제안 모듈로 채용한다. 둘째, 제안 모델은 각 포인트 세그먼트별로 텍스트와 의미적으로 정렬된 시각적 특징을 얻기 위해, 사전 학습된 OpenScene 인코더와 CLIP 인코더를 적용하여 포인트 클라우드와 멀티-뷰 RGB 영상들로부터 각각 3차원 및 2차원 특징들을 추출한다. 마지막으로, 제안 모델은 개방형 어휘 레이블 할당 과정동안 각 포인트 클라우드 세그먼트별로 추출한 2차원 시각적 특징과 3차원 시각적 특징을 상호 보완적으로 함께 이용하기 위해, 특징 앙상블 기법을 적용한다. 본 논문에서는 ScanNet-V2 벤치마크 데이터 집합을 이용한 다양한 정량적, 정성적 실험들을 통해, 제안 모델의 성능 우수성을 입증한다.

3-D Laser Measurement using Mode Image Segmentation Method

  • Moon Hak-Yong;Park Jong-Chan;Han Wun-Dong;Cho Heung-Gi;Jeon Hee-Jong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.104-108
    • /
    • 2001
  • In this paper, the 3-D measurement method of moving object with a laser and one camera system for image processing method is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. In this paper, to improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.

  • PDF

Quantification of Fibers through Automatic Fiber Reconstruction from 3D Fluorescence Confocal Images

  • Park, Doyoung
    • 한국정보기술학회 영문논문지
    • /
    • 제10권1호
    • /
    • pp.25-36
    • /
    • 2020
  • Motivation: Fibers as the extracellular filamentous structures determine the shape of the cytoskeletal structures. Their characterization and reconstruction from a 3D cellular image represent very useful quantitative information at the cellular level. In this paper, we presented a novel automatic method to extract fiber diameter distribution through a pipeline to reconstruct fibers from 3D fluorescence confocal images. The pipeline is composed of four steps: segmentation, skeletonization, template fitting and fiber tracking. Segmentation of fiber is achieved by defining an energy based on tensor voting framework. After skeletonizing segmented fibers, we fit a template for each seed point. Then, the fiber tracking step reconstructs fibers by finding the best match of the next fiber segment from the previous template. Thus, we define a fiber as a set of templates, based on which we calculate a diameter distribution of fibers.

뇌종양 분할을 위한 3D 이중 융합 주의 네트워크 (3D Dual-Fusion Attention Network for Brain Tumor Segmentation)

  • ;;;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.496-498
    • /
    • 2023
  • Brain tumor segmentation problem has challenges in the tumor diversity of location, imbalance, and morphology. Attention mechanisms have recently been used widely to tackle medical segmentation problems efficiently by focusing on essential regions. In contrast, the fusion approaches enhance performance by merging mutual benefits from many models. In this study, we proposed a 3D dual fusion attention network to combine the advantages of fusion approaches and attention mechanisms by residual self-attention and local blocks. Compared to fusion approaches and related works, our proposed method has shown promising results on the BraTS 2018 dataset.

치과 진료 시뮬레이션을 위한 3차원 치아의 재구성 시스템 (3D Reconstruction System of Teeth for Dental Simulation)

  • 허훈;최원준;채옥삼
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.133-140
    • /
    • 2004
  • 최근 치과 분야의 정보화는 환자자료와 진단영상의 취득과 관리 등을 포함하는 통합 정보화시스템으로써 급속히 발전되었다. 이러한 시스템이 성공하기 위해선 의사가 정확하게 질환을 진단하고 치료하도록 양질의 정보를 제공하며 환자들에게 필요한 고가의 치료를 효과적으로 설득할 수 있는 기능이 확보되어야 한다. 이러한 측면에서 치과분야 시뮬레이션이 가능한 3차원 재구성된 치아모델이 필요하다 치과분야의 치아조작은 대부분 개별 치아 단위로 이루어진다. 따라서 3차원 치아 재구성 시스템은 개변치아의 영역분할과 치아에 맞는 재구성기술이 요구된다. 본 논문에서 적응 최적 임계화를 사용한 치아단위 영역분할 방안과 분할된 경계를 사용한 윤곽선 기반방식의 치아 재구성방안을 제안한다. 즉, 연속된 CT영상에서 개별치아 영역을 정확히 분할하기 위해 슬라이스마다 적응적으로 결정된 최적의 임계치를 사용하여 각 치아를 인접한 이웃 치아와 치조골로부터 분리한다. 분할결과는 3차원 재구성되어 개별 치아를 조작하는 사용자의 입력에 따라 3차원 공간상에서 치아의 이동, 발거 동작을 바탕으로 치과 진료의 시뮬레이션을 가능하게 한다.

미세유체소자와 디지털 홀로그래피 기술을 이용한 미생물의 3D 이미징과 세그먼테이션 (3D sensing and segmentation of microorganism using microfluidic device and digital holography)

  • 신동학;이준재
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.447-452
    • /
    • 2013
  • 미세유체소자(microfluidic device)는 미생물과 관련된 다양한 작업들에 대해서 정확한 제어를 제공할 수 있다. 본 논문에서는 미세유체 소자와 디지털 홀로그래피 마이크로스코피 기술로 구성된 시스템을 구성하고 미생물의 3D 이미징과 세그먼테이션을 설명한다. 각각의 미생물은 미세유체 채널을 통하여 흘러가며 홀로그래피 마이크로스코피가 홀로그램을 기록한다. 기록된 홀로그램은 Fresnel 변환을 통하여 컴퓨터적으로 복원되며, 복원된 영상의 위상성분을 이용하여 미생물의 위치 정보를 찾기 위한 세그먼테이션을 수행한다. 제안하는 방법의 유용함을 설명하기 위하여 광학 실험을 수행하고 그 결과를 나타내었다.