• Title/Summary/Keyword: 3-D Reconstruction

Search Result 1,153, Processing Time 0.029 seconds

Analysis of Sunshine Amount for Education Environment according to Installation of Apartment Structures (아파트 구조물 설치에 따른 교육환경 일조량 분석)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.117-124
    • /
    • 2012
  • Due to recent urban maintenance project for the aged towns, the reconstruction of apartments into super-high-rise and high-rise apartment structures has been approved for concentrated use of land, and accordingly the infringement on sunshine for nearby residential area is rising as a social issue. Especially the educational environment conditions according to infringement on sunshine in educational facilities are posing many problems. Accordingly in this study, for such sunshine analysis of educational environment, Auto $CAD^{(R)}$ software has been used to construct the 3D model for the educational facility structures. And with the simulation technique, the windows and the schoolyard of the education facility were set to be the lighting standard surface to take measurements for the sunshine environment of the educational facilities by the minute from 8:00AM until 4:00PM for the sunshine amount by true solar time according to the movement of the sun. Also, the sunshine environment of the education facility according to the damage before/after new construction of apartments was charted, and through comparison with the video produced by sun shadow projection method, the sunshine amount of the educational environment could be verified. In future, it is expected to be efficiently used in the sunshine analysis of education environment utilizing such simulation techniques.

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.

An Efficient Analysis Method of Multiple View Images for Motion Capture (모션 캡쳐를 위한 다시점 영상의 효율적인 분석법)

  • Seo, Yung-Ho;Park, You-Shin;Koo, Ddeo-Ol-Ra;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.44-56
    • /
    • 2008
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF

Waveform Simulation of Full-Waveform LIDAR (풀웨이브폼 라이다의 반사파형 시뮬레이션)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • The LIDAR data can be efficiently utilized for automatic reconstruction of 3D models of objects on the terrain and the terrain itself. In this paper, we attempted to generate simulated waveforms of FW (Full-Waveform) LIDAR (LIght Detection And Ranging). We performed the geometric modeling of the sensor and objects, and the radiometric modeling of the waveform intensity. First, we compute the origins and directions of the sub-beams by considering the divergence effects of a laser beam. We then searched for the locations at which the sub-beams intersected with the objects, such as ground, buildings and trees. Finally, we generate the individual waveforms of the reflected sub-beams and the waveform of the entire beam by summing the individual ones. With the experimental results, we confirmed the waveforms were reasonably generated, showing the characteristics of the surfaces the beam interacted with.

Tracking the History of the Three-story Stone Pagoda from the Goseonsa Temple Site in Gyeongju throughan Analysis of Component (부재 해석을 통한 경주 고선사지 삼층석탑의 연혁 추적)

  • Jeon, Hyo Soo
    • Conservation Science in Museum
    • /
    • v.21
    • /
    • pp.41-52
    • /
    • 2019
  • The findings of a 2017 safety inspection of the Three-story Pagoda from the Goseonsa Temple site in Gyeongju suggested the possibility that the stone for the second story of the pagoda may have been rotated after the pagoda was disassembled for removal from its original site in 1975. The materials from the pagoda were investigated using photographs and other relevant data from both the Japanese colonial period and from around 1975. The analysis found that the materials of the pagoda were not changed after analleged reconstruction in 1943, but that during the process of relocating the pagoda in 1975 the body of the second story was indeed rotated counter clockwise by 90 degrees and one of the four stone elements making up the first-story roof was exchanged with a part from the second-story roof. In order to discover whether the materials had been incorrectly placed, each part of the pagoda was precisely measured and the elements of the roofs were virtually reconstructed using 3D scanning data. The investigation did not find any singularities with in the components of each roof; the four part sof the first-story roof were 75 to 76 centimeters thick and those for the second-story roof were 78 to 79 centimeters thick. The connections between each part of the roofs also appeared natural. This seems to indicate that there was indeed an undocumented repair of the pagoda at some point between its creation and 1943 and an error that took place during this repair was corrected in 1975. In addition, the study suggested a possibility that the body of the second story was rotated counter clockwised to a change in the locations of parts of the two roofs.

Consideration of maxillary sinus bone thickness when installing miniscrews (미니스크류 식립 시 상악동의 골두께에 대한 고려)

  • Kim, Do-Hyun;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa
    • The korean journal of orthodontics
    • /
    • v.39 no.6
    • /
    • pp.354-361
    • /
    • 2009
  • Objective: Miniscrews are widely used in orthodontic treatment for the purpose of anchorage control. Maximum anchorage can be acquired by the use of miniscrews. Maxillary miniscrew has many clinical advantage for orthodontic treatment. Maxillary sinus, tooth root can be an obstacle for maxillary miniscrew installation. The purpose of this study was to find the safest area and direction of miniscrew insertion in consideration of the maxillary sinus. Methods: The maxillary sinus area of 40 patients (20 male, 20 female) was measured using 3D computed tomography and 3D reconstruction program. Results: The maxillary sinus floor was located most inferiorly between the 1st molar and 2nd molar and located most superiorly between the 1st premolar and 2nd premolar. Buccal bone thickness from the maxillary sinus is significantly thicker between the 1st molar and 2nd molar and significantly thinner between the 1st premolar and 2nd premolar. The area between the 1st premolar and 2nd premolar has a significantly longer vertical distance from CEJ to sinus in consideration of buccal bone thickness. Conclusions: Considering maxillary bone thickness, the posterior area has advantages over the anterior area for installing miniscrews safely and preventing perforation.

Occurrence of Nuclear Inclusions in Plant Cells (식물세포 내 핵 함유구조 발달 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.229-234
    • /
    • 2011
  • The occurrence of nuclear inclusions has been reported in various plant groups from primitive ferns to higher flowering plants. Their presence within a group seems to be randomly distributed without any phylogenetic relationships among species. According to the current survey, nuclear inclusions have been widely documented in more than several hundreds of species from various families of plants. The morphology and internal structures of nuclear inclusions are diverse and at least five types of inclusions develop within plant nuclei; amorphous, crystalline, fibrous, lamellar, and tubular form. Among these types, crystalline inclusions are the ones that are the most frequently reported. The inclusions are not bound by membranes and appear to be related to the nucleoli, either spatially by a close association or by an inverse relationship in size during development. The idea that nuclear inclusions are of a proteinaceous nature has been widely accepted. Further link to nucleolar activity as a protein storing site has also been suggested based on the association between the nucleolus and nuclear inclusions. Various investigations of nuclear inclusions have revealed more information about their structural features, but characterizing their precise function and subunit complexity employing molecular analysis and 3-D reconstruction remains to be elucidated. Tilting and tomography of serial sections with appropriate image processing can provide valuable information on their subunit(s). The present review summarizes discussion about different nuclear inclusions in plants from previous works, giving special attention to their fine, ultrastructural morphology, function, and origin.

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

An Analysis of Vertical Position Accuracy for the Three-Dimensional Spatial Data Object Utilizing the Public Information (공공데이터를 활용한 3차원 공간정보 객체의 수직위치 정확도 분석)

  • Kim, Jeong Taek;Yi, Su Hyun;Kim, Jong Il;Bae, Sang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Recently, as new paradigm for government operation called government 3.0, government is actively operating policy opening and sharing public data. In addition, the Ministry of Land are operating an open platform integrated map service (the VWorld) which provides a variety of video contents such as the country's national spatial information, traffic information and three-dimensional building for the public. According to W3C Foundation's Open Data Status Report(2013), our country has the evaluated results that the part of the government's policy support and planning is good while the part of the data management is vulnerable. So our country needs the quality improvement for the data management. In addition, a digital aerial photograph image data is required to be up-to-date for the three-dimensional spatial object data. In this paper, we present the method for enhancement of the accuracy of vertical position and for maintainment of up-to-date vertical position. Our methods evaluate the data quality and analyze the cause of error of measurement utilizing the national standard quality assessment method. The result of research shows that the accuracy of vertical position is improved if the height of the building captain is adjusted by the quality assessment values and a three-dimensional model has up-to-date data if reconstruction and extension information of construction register is utilized.