• 제목/요약/키워드: 3-D FEM Analysis

검색결과 690건 처리시간 0.034초

자유단조공정에서 기공폐쇄 예측을 위한 유한요소해석 (FEM Analysis for the Prediction of Void Closure On the Open Die Forging Process)

  • 민규영;임성주;최호준;최석우;박용복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • In order to resolve the problems which appear after the clean large ingot production process, the impurities which are involved in the steel smelting process should be removed by developing cleaner materials. Through the rationalization of cogging process that is the first forging process of large ingot the quality is to be improved. For the sake of the optimization of an open die forging process and the improvement of the subject matter frequency ratio, a hazard precise die forging process must be developed and a Near Net Shape Forming accomplished. As a result, energy can be reduced by minimizing an after control process. In order to produce large axes and other forming parts, processing techniques are to be developed. In this context, this paper is a study about a reduction ratio, dies width ratio and rotary angles, the amount of overlap, and intends to analysis cogging processes, utilizing Deform-3D cogging module

  • PDF

초저온 볼밸브의 열 응력 및 유동해석 (Thermal stress and Flow Analysis of a Cryogenic Ball Valve)

  • 배상규;이원희;김현섭;김동수
    • 유공압시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.8-13
    • /
    • 2006
  • The high pressure cryogenic ball valve is used to transfer the liquefied natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kgf/cm^2$. In the present work, the temperature distribution and thermal deformation is calculated numerically. The CAR and CFD methods are useful to predict the thermal matter and the inner flow field of high pressure cryogenic ball valve. For this reason, to optimum design of the cryogenic ball valve, the theological behavior of the supplied LNG in a cryogenic valve has been studied. The governing equations are discredited and solved numerically by the finite-volume method and finite-element method. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

사면보강 뿌리말뚝공법의 준3차원적 안정해석기법 (Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement)

  • 김홍택;강인규;박사원
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석 (Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate)

  • 조원섭;송기일;류희환
    • 한국터널지하공간학회 논문집
    • /
    • 제16권2호
    • /
    • pp.213-224
    • /
    • 2014
  • 최근, tunnel boring machine (TBM)을 이용한 도심지 지중 전력구 터널 건설이 증가하고 있다. 쉴드 TBM을 이용한 기계화 터널 굴착 공법은 재래식 공법에 비해 지반침하를 최소화 하고 발파에 의한 진동을 줄일 수 있는 장점이 있다. 국내에서는 earth pressure balance(EPB) 쉴드 TBM이 주로 사용되고 있다. 그러나 전력구 터널 굴착을 위한 쉴드 TBM 공법이 증가함에도 불구하고, 전력구 쉴드 TBM 터널의 거동 분석에 관한 연구는 미비한 실정이다. 본 연구에서는 후방주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성을 분석하고, 굴착면 지반 손실과 후방주입 거리와의 상관관계를 도출하고자 한다. 쉴드 TBM을 이용한 터널 굴착은 3D FEM을 이용하여 시뮬레이션 하였다. 뒷채움 그라우트가 설치되는 거리의 변화에 따른 축력, 전단력, 휨 모멘트와 같은 단면력을 검토하고 지표면에서의 연직 변위를 분석하였다. 또한, 유한요소해석으로 얻어진 결과와 안정성 분석에 기초하여, 지반과 터널 구조물의 안정성을 확보할 수 있는 뒷채움재 주입시기를 결정할 수 있다.

건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발 (Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line)

  • 정상화;차경래;신병수;나윤철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

Hydroelastic response of 19,000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity

  • Im, Hong-Il;Vladimir, Nikola;Malenica, Sime;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.339-349
    • /
    • 2017
  • This paper is related to structural design evaluation of 19,000 TEU ultra large container ship, dealing with hydroelastic response, i.e. springing and whipping. It illustrates application of direct calculation tools and methodologies to both fatigue and ultimate strength assessment, simultaneously taking into account ship motions and her elastic deformations. Methodology for springing and whipping assessment within so called WhiSp notation is elaborated in details, and in order to evaluate innovative container ship design with increased loading capacity, a series of independent hydroelastic computations for container ship with mobile deckhouse and conventional one are performed with the same calculation setup. Fully coupled 3D FEM - 3D BEM model is applied, while the ultimate bending capacity of hull girder is determined by means of MARS software. Beside comparative analysis of representative quantities for considered ships, relative influence of hydroelasticity on ship response is addressed.

3차원 열-기계 커플링 모델에 의한 벤틸레이티드 디스크-패드 브레이크의 온도 분포와 접촉 압력에 관한 연구 (A Study on Temperature Field and Contact Pressure in Ventilated Disc-Pad Brake by 3D Thermo-mechanical Coupling Model)

  • 황평;서희창;우쉔
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.421-426
    • /
    • 2009
  • The brake system is important part of automobile safety system. The disc brake system is divided two parts: the rotating axisymmetrical disc and the stationary pads. During braking, the kinetic energy and potential energy of moving vehicle were converted into the thermal energy through frictional heat between the brake disc and the pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperature during the braking process. The object of present work is to determine temperature and thermal stress, to compare to simulation results and experimental results in the disc by partial 3D model of ventilated disc brake with appropriate boundary conditions. In the simulation process, the mechanical loads were applied to the thermo-mechanical coupling analysis in order to simulate the process of heat produced by friction.

상세 트레드 패턴을 반영한 3차원 타이어 메쉬 생성 (Three-Dimensional Finite Element Mesh Generation of Tires Considering Detailed Tread Patterns)

  • 조진래;김기환;홍상일;김남전;김기운
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.330-335
    • /
    • 2001
  • While contacting directly with ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) for various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a systematic 3-D mesh generation of tires considering the detailed tread pattern. Basically, tire body and tread meshes are separately generated, and then both are to be combined. For the systematic mesh generation, which consists of a series of meshing steps, we develop in-house subroutines which utilize the useful functions of I-DEAS solid modeler. The detailed pattern mesh can be imparted partially or completely.

  • PDF

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.