• Title/Summary/Keyword: 3-D FEM Analysis

Search Result 690, Processing Time 0.029 seconds

Numerical Analysis on the Behavior of the Earth Tunnel due to Supporting Methods (지보공법에 따른 토사터널의 거동에 관한 수치해석)

  • Kim, Jin-Tae;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.239-250
    • /
    • 2004
  • Numerical analysis were performed to investigate the stability and internal movement of tunnel located beneath the base of abutment of bridge according to the method of supporting tunnel. Two supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method were used in the centrifuge model tests. The slip form of model lining, specially built to simulate the process of tunnel excavating under the condition of accelerated g-level, was used in the centrifuge model tests. Four centrifuge model tests were performed, changing the supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method and the location of model abutment base of bridge. For internal displacement of tunnel, movements of the crown. The left and the right sides of spring line were measured during the proceeds of excavating tunnel in centrifuge model tests. Test results were compared with numerically estimated values of internal displacement of tunnel by using the commercially available FEM software of PENTAGON-3D. It was found that they were in good agreements and the large diameter of pipe supporting method was more stable than the multi-staged grouting method with steel pipes with respect to the internal movement of tunnel.

  • PDF

Analysis of PSC Box Girder Railway Bridge and Design of its Diaphragm using Sturt-and-Tie Model (PSC 박스 거더 철도교량의 해석 및 스트럿-타이 모델에 의한 격벽부 설계)

  • Song, Ha-Won;Kim, Hyoung-Woon;Kim, Young-Hoon;Byun, Keun-Joo
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.30-39
    • /
    • 1998
  • The functions of diaphragms at abutments and piers of PSC box girder railway bridge are to transfer forces from the superstructure onto bearings or columns and to stiffen the superstructure cross-section against in -plane deformation. Due to stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than those for other structural members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from that of the deck slab obtained from two dimensional analysis of the bridge, which is basis for the design of deck slab. In this paper, three dimensional behavior of deck slab near the diaphragm of prestressed concrete (PSC) box girder railway bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling and using the strut-and-tie model design of the diaphragm are presented. The modeling techniques used in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

FE Analysis of The Forming Process of The High Precision Rectangular Battery Case used in Cellular Phone and IMT-2000 (Cellular Phone 및 IMT-2000용 초정밀 사각 밧데리 케이스 성형공정 해석)

  • Kim, H.J.;Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.778-782
    • /
    • 2000
  • Deep drawing and ironing are the major process used today in manufacturing of battery case used in cellular phone and IMT-2000 from aluminum. The same technology is utilized in manufacturing of steel or aluminum rectangular cans for components of medical instrument, portable PC, walkman and so on. Most of these processes require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of theses processes are relatively less known. Thus, it is expected that process simulations using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations with the cellular phone and IMT-2000. A commercially avaliable finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

Design and Analysis of Swingarm Type Rotary Actuator for Micro ODD (초소형 광디스크 드라이브용 스윙암 방식 로터리 엑츄에이터 설계 및 분석)

  • 김동욱;홍어진;박노철;박영필;김수경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.780-785
    • /
    • 2003
  • Recently the trends in information storage devices need small size, mobility, high capacity, and low power consumption etc. To satisfy those, the development of high performance actuator is an important issue. Compared with general linear actuator for optical disk drive, swingarm type rotary actuator is suitable to design in small form factor and has fast access time for random access. Swingarm actuator is designed considering the structural problem and the actuating force of VCM(Voice Coil Motor). The increase of mass caused by optical components makes vibration problems of swing-arm, therefore resonance frequency should be increased and inertia has to be reduced. ANSYS FEM tool is employed in optimizing swingarm. The VCM is designed using 3-D electro-magnetic analysis, and parameters of magnetic circuit are determined to matte large flux density. The large flux density enables to achieve low power consumption. VCM holder is designed to get the mass balance of total actuator and this balance reduces the magnitude of critical mode relative to pivot bearing, It is expected that swingarm type rotary actuator designed by this method is available to variable type of micro optical disk drives.

  • PDF

A Study on the Thermal Analysis of Induction Hooting Cooker with Finite Element Method (유한요소법에 의한 IH-Cooker의 열해석에 관한 연구)

  • Oh, Hong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-85
    • /
    • 2003
  • Recently, induction heating cooker(IH-Cooker) is very interested for high efficiency, the quickness of heating time and the convenient regulation of heating spot. In this paper, we proposed the magneto-thermal analysis of an induction heating cooker(IH-Cooker) as an efficient design, and analyzed the magnetic fold intensity inside the axisymmetric shaped cooker using three-dimensional axisymmetric finite element method(Flux2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the cooker. Also, we presented the temperature characteristics of the IH-Cooker according to input frequency and relative permeability in stainless parts and in aluminum parts.

A study on interface heat transfer coefficient in hot forging of Al6061 by experiments and FE analysis (Al6061 열간단조시 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.219-222
    • /
    • 2005
  • The temperature difference between die and workpiece has frequently caused various surface defects. The non-homogeneous temperature distribution of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperatures were mainly affected by the coefficient of thermal contact conductance. The precise coefficient is necessary to predict accurately the temperature changes of die and workpiece. The experiment is preformed to measure the temperature distribution of die and workpiece in closed die upsetting. And then, the coefficient is classified into function of pressure and confirmed by the comparison between experiments and FE analyses using the other model. The FE analysis to predict the temperature distribution is performed by commercial software $DEFORM-3D^{TM}$. However, it might be impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are performed with the hardness of Al6061-forged part.

  • PDF

A Study of the FEM Forming Analysis of the Al Power Forging Piston (유한요소해석을 이용한 알루미늄분말단조 피스톤 성형해석에 관한 연구)

  • Kim, Ho-Yoon;Park, Chul-Woo;Kim, Hyun-Il;Park, Kyung-Seo;Kim, Young-Ho;Joe, Ho-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1543-1548
    • /
    • 2010
  • Powder metallurgy processes are used to form Net-Shape products and have been widely used in the production of automobile parts to improve its manufacture productivity. Powder-forging technology is being developed rapidly because of its economic merits and because of the possibility of reducing the weight of automobile parts by replacing steel parts with aluminum ones, in particular while manufacturing automotive parts. In the powder-forging process, the products manufactured by powder metallurgy are forged in order to remove any pores inside them. Powderforging technology can help expand the applications of powder metallurgy; this is possible because powder-forging technology enables the minimization of flashes, reduction of the number of stages, and possible grain refinement. At present, powder forging is widely used for manufacturing primary mechanical parts as in combination with the technology of powder forging of aluminum alloy pistons.

Study on design of the composite torque link for a landing gear system of a helicopter (헬리콥터 착륙장치를 위한 복합재 토크링크의 설계에 대한 연구)

  • Kim, Jin-Bong;Um, Moon-Kwang;Lee, Sang-Yong;Kim, Tae-Uk;Shin, Jeong-Woo
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 2009
  • In this paper, we propose the design method for the composite torque link of a landing gear for a helicopter. The composite torque link has to be light weighted and very stiff to keep the shock absorber in the landing gear of helicopter. The configuration and structural shape has to be designed in consideration of the RTM (Resin Transfer Molding) manufacturing process which is adopted to minimize the manufacturing cost. The mechanical properties are obtained through the coupon tests with the specimens made by the same manufacturing process for the composite structure. The optimal design process was performed through iterative modifications of the models which were verified by stress analysis using FEM. The composite torque link has lug-shaped parts and is very thick, so 3D Layered solid elements of ABAQUS were used to get the stress field including the stress components in thickness direction and non-linear static analysis using contact B.C. of rigid-deform condition was used to get the optimal design.

Development of Subbase Analysis Model Considering Stress Dependency (응력의존성을 고려한 보조기층 해석모델 개발)

  • Kim, Ji Hwan;Kang, Beong Joon;Lee, Jun Hwan;Choi, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.331-338
    • /
    • 2008
  • Road pavements consist of layered structure and each layer is made of various materials. The load responses of pavement structures are very sensitive to properties of subbase materials. Successful pavement design, therefore, depends on the method and the accuracy of measuring material properties, and it requires realistic description of the behavior of layered materials. Resilient modulus ($M_R$) is widely used properties representing pavement structure materials. In this study, we collected data for mechanical characteristics of subbase materials that were used in domestic construction and adopted them to form a constitutive equation of subbase $M_R$ value. Proposed model was evaluated through the finite element analysis.

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF